Taiwanese Journal of Mathematics

Second-order Necessary Optimality Conditions for an Optimal Control Problem

Toan Nguyen and Thuy Le

Full-text: Open access

Abstract

Second-order necessary optimality conditions for an optimal control problem with a nonconvex cost function and state-control constraints are studied in this paper. By establishing an abstract result on second-order necessary optimality conditions for a mathematical programming problem, we obtain second-order necessary optimality conditions for an optimal control problem.

Article information

Source
Taiwanese J. Math., Volume 24, Number 1 (2020), 225-264.

Dates
Received: 19 September 2018
Revised: 28 February 2019
Accepted: 9 April 2019
First available in Project Euclid: 18 April 2019

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1555552827

Digital Object Identifier
doi:10.11650/tjm/190403

Mathematical Reviews number (MathSciNet)
MR4053845

Zentralblatt MATH identifier
07175547

Subjects
Primary: 49J15: Optimal control problems involving ordinary differential equations 49J21: Optimal control problems involving relations other than differential equations 49K21: Problems involving relations other than differential equations 90C90: Applications of mathematical programming 93C05: Linear systems

Keywords
first-order optimality condition second-order optimality condition optimal control problem mixed constraint

Citation

Nguyen, Toan; Le, Thuy. Second-order Necessary Optimality Conditions for an Optimal Control Problem. Taiwanese J. Math. 24 (2020), no. 1, 225--264. doi:10.11650/tjm/190403. https://projecteuclid.org/euclid.twjm/1555552827


Export citation

References

  • J.-P. Aubin and H. Frankowska, Set-valued Analysis, Systems & Control: Foundations & Applications 2, Birkhäuser Boston, Boston, MA, 1990.
  • A. Ben-Tal, Second-order and related extremality conditions in nonlinear programming, J. Optim. Theory Appl. 31 (1980), no. 2, 143–165.
  • J. F. Bonnans, R. Cominetti and A. Shapiro, Second order optimality conditions based on parabolic second order tangent sets, SIAM J. Optim. 9 (1999), no. 2, 466–492.
  • J. F. Bonnans, C. de la Vega and X. Dupuis, First- and second-order optimality conditions for optimal control problems of state constrained integral equations, J. Optim. Theory Appl. 159 (2003), no. 1, 1–40.
  • J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer Series in Operations Research, Springer-Verlag, New York, 2000.
  • E. Casas, J. C. de los Reyes and F. Tröltzsch, Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints, SIAM J. Optim. 19 (2008), no. 2, 616–643.
  • A. Cernea and H. Frankowska, A connection between the maximum principle and dynamic programming for constrained control problems, SIAM J. Control Optim. 44 (2005), no. 2, 673–703.
  • N. H. Chieu, B. T. Kien and N. T. Toan, Further results on subgradients of the value function to a parametric optimal control problem, J. Optim. Theory Appl. 168 (2016), no. 3, 785–801.
  • R. Cominetti, Metric regularity, tangent sets, and second-order optimality conditions, Appl. Math. Optim. 21 (1990), no. 3, 265–287.
  • A. L. Dontchev, Perturbations, Approximations and Sensitivity Analysis of Optimal Control Systems, Lecture Notes in Control and Information Sciences 52, Springer-Verlag, Berlin, 1983.
  • H. Frankowska, D. Hoehener and D. Tonon, A second-order maximum principle in optimal control under state constraints, Serdica Math. J. 39 (2013), no. 3-4, 233–270.
  • H. Frankowska and D. Tonon, Pointwise second-order necessary optimality conditions for the Mayer problem with control constraints, SIAM J. Control Optim. 51 (2013), no. 5, 3814–3843.
  • R. Henrion, B. S. Mordukhovich and N. M. Nam, Second-order analysis of polyhedral systems in finite and infinite dimensions with applications to robust stability of variational inequalities, SIAM J. Optim. 20 (2010), no. 5, 2199–2227.
  • R. Hilscher and V. Zeidan, Second order sufficiency criteria for a discrete optimal control problem, J. Difference Equ. Appl. 8 (2002), no. 6, 573–602.
  • ––––, Discrete optimal control: Second order optimality conditions, J. Difference Equ. Appl. 8 (2002), no. 10, 875–896.
  • D. Hoehener, Variational approach to second-order optimality conditions for control problems with pure state constraints, SIAM J. Control Optim. 50 (2012), no. 3, 1139–1173.
  • A. D. Ioffe, Necessary and sufficient conditions for a local minimum III: Second order conditions and augmented duality, SIAM J. Control Optim. 17 (1979), no. 2, 266–288.
  • A. D. Ioffe and V. M. Tihomirov, Theory of Extremal Problems, Studies in Mathematics and its Applications 6, North-Holland, Amsterdam-New York, 1979.
  • H. Kawasaki, An envelope-like effect of infinitely many inequality constraints on second-order necessary conditions for minimization problems, Math. Programming 41 (1988), no. 1, (Ser. A), 73–96.
  • B. T. Kien and V. H. Nhu, Second-order necessary optimality conditions for a class of semilinear elliptic optimal control problems with mixed pointwise constraints, SIAM J. Control Optim. 52 (2014), no. 2, 1166–1202.
  • B. T. Kien, V. H. Nhu and N. H. Son, Second-order optimality conditions for a semilinear elliptic optimal control problem with mixed pointwise constraints, Set-Valued Var. Anal. 25 (2017), no. 1, 177–210.
  • B. T. Kien, N. T. Toan, M. M. Wong and J.-C. Yao, Lower semicontinuity of the solution set to a parametric optimal control problem, SIAM J. Control Optim. 50 (2012), no. 5, 2889–2906.
  • L. Li, Y. Gao and H. Wang, Second order sufficient optimality conditions for hybrid control problems with state jump, J. Ind. Manag. Optim. 11 (2015), no. 1, 329–343.
  • K. Malanowski, H. Maurer and S. Pickenhain, Second-order sufficient conditions for state-constrained optimal control problems, J. Optim. Theory Appl. 123 (2004), no. 3, 595–617.
  • O. L. Mangasarian and T. H. Shiau, Lipschitz continuity of solutions of linear inequalities, programs and complementarity problems, SIAM J. Control Optim. 25 (1987), no. 3, 583–595.
  • B. Marinković, Optimality conditions for discrete optimal control problems, Optim. Methods Softw. 22 (2007), no. 6, 959–969.
  • ––––, Optimality conditions for discrete optimal control problems with equality and inequality type constraints, Positivity 12 (2008), no. 3, 535–545.
  • ––––, Second-order optimality conditions in a discrete optimal control problem, Optimization 57 (2008), no. 4, 539–548.
  • B. S. Mordukhovich, Variational Analysis and Generalized Differentiation I: Basis Theory, Grundlehren der Mathematischen Wissenschaften 330, Springer-Verlag, Berlin, 2006.
  • ––––, Variational Analysis and Generalized Differentiation II: Applications, Grundlehren der Mathematischen Wissenschaften 331, Springer-Verlag, Berlin, 2006.
  • M. Moussaoui and A. Seeger, Epsilon-maximum principle of Pontryagin type and perturbation analysis of convex optimal control problems, SIAM J. Control Optim. 34 (1996), no. 2, 407–427.
  • Z. Páles and V. M. Zeidan, Nonsmooth optimum problems with constraints, SIAM J. Control Optim. 32 (1994), no. 5, 1476–1502.
  • ––––, Optimum problems with certain lower semicontinuous set-valued constraints, SIAM J. Control Optim. 8 (1998), no. 3, 707–727.
  • ––––, Characterization of $L^1$-closed decomposable sets in $L^{\infty}$, J. Math. Anal. Appl. 238 (1999), no. 2, 491–515.
  • ––––, Optimal control problems with set-valued control and state constraints, SIAM J. Optim. 14 (2003), no. 2, 334–358.
  • J.-P. Penot, Optimality conditions in mathematical programming and composite optimization, Math. Programming 67 (1994), no. 2, 225–245.
  • R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Grundlehren der Mathematischen Wissenschaften 317, Springer-Verlag, Berlin, 1998.
  • R. T. Rockafellar and P. R. Wolenski, Convexity in Hamilton-Jacobi theory I: Dynamics and duality, SIAM J. Control Optim. 39 (2000), no. 5, 1323–1350.
  • ––––, Convexity in Hamilton-Jacobi theory II: Envelope representations, SIAM J. Control Optim. 39 (2000), no. 5, 1351–1372.
  • L. Q. Thuy and N. T. Toan, Subgradients of the value function in a parametric convex optimal control problem, J. Optim. Theory Appl. 170 (2016), no. 1, 43–64.
  • L. Q. Thuy, B. T. Thanh and N. T. Toan, On the no-gap second-order optimality conditions for a discrete optimal control problem with mixed constraints, J. Optim. Theory Appl. 173 (2017), no. 2, 421–442.
  • N. T. Toan, Mordukhovich subgradients of the value function in a parametric optimal control problem, Taiwanese J. Math. 19 (2015), no. 4, 1051–1072.
  • N. T. Toan, Q. H. Ansari and J.-C. Yao, Second-order necessary optimality conditions for a discrete optimal control problem, J. Optim. Theory Appl. 165 (2015), no. 3, 812–836.
  • N. T. Toan and B. T. Kien, Subgradients of the value function to a parametric optimal control problem, Set-Valued Var. Anal. 18 (2010), no. 2, 183–203.
  • N. T. Toan and L. Q. Thuy, Second-order necessary optimality conditions for a discrete optimal control problem with mixed constraints, J. Global Optim. 64 (2016), no. 3, 533–562.
  • J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces, Appl. Math. Optim. 5 (1979), no. 1, 49–62.