Taiwanese Journal of Mathematics

Three Examples of Sharp Commutator Estimates via Harmonic Extensions

Armin Schikorra

Full-text: Open access

Abstract

Recently, Lenzmann and the author observed how to obtain a large class of sharp commutator estimates by a combination of an integration by parts, an harmonic extension, and trace space estimates. In this survey we review this approach in three concrete examples: the Jacobian estimate by Coifman-Lions-Meyer-Semmes, the Coifman-Rochberg-Weiss commutator estimate for Riesz transforms, and a Kato-Ponce-Vega-type inequality.

Article information

Source
Taiwanese J. Math., Volume 23, Number 6 (2019), 1365-1388.

Dates
Received: 6 July 2018
Revised: 22 February 2019
Accepted: 22 February 2019
First available in Project Euclid: 7 March 2019

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1551927632

Digital Object Identifier
doi:10.11650/tjm/190204

Mathematical Reviews number (MathSciNet)
MR4033550

Zentralblatt MATH identifier
07142978

Subjects
Primary: 42B37: Harmonic analysis and PDE [See also 35-XX] 47B47: Commutators, derivations, elementary operators, etc.

Keywords
commutator estimates BMO Hardy space

Citation

Schikorra, Armin. Three Examples of Sharp Commutator Estimates via Harmonic Extensions. Taiwanese J. Math. 23 (2019), no. 6, 1365--1388. doi:10.11650/tjm/190204. https://projecteuclid.org/euclid.twjm/1551927632


Export citation

References

  • F. Bethuel, Un résultat de régularité pour les solutions de l'équation de surfaces à courbure moyenne prescrite, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), no. 13, 1003–1007.
  • S. Blatt, P. Reiter and A. Schikorra, Harmonic analysis meets critical knots. Critical points of the Möbius energy are smooth, Trans. Amer. Math. Soc. 368 (2016), no. 9, 6391–6438.
  • H. Brezis and H.-M. Nguyen, The Jacobian determinant revisited, Invent. Math. 185 (2011), no. 1, 17–54.
  • H.-Q. Bui and T. Candy, A characterization of the Besov-Lipschitz and Triebel-Lizorkin spaces using Poisson like kernels, in; Functional Analysis, Harmonic Analysis, and Image Processing: A Collection of Papers in honor of Björn Jawerth, 109–141, Contemp. Math. 693, Amer. Math. Soc., Providence, RI, 2017.
  • L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245–1260.
  • S. Chanillo, Sobolev inequalities involving divergence free maps, Comm. Partial Differential Equations 16 (1991), no. 12, 1969–1994.
  • R. R. Coifman, A. McIntosh and Y. Meyer, L'intégrale de Cauchy définit un opérateur borné sur $L^{2}$ pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), no. 2, 361–387.
  • R. R. Coifman and Y. Meyer, Nonlinear harmonic analysis, operator theory and P.D.E, in: Beijing Lectures in Harmonic Analysis (Beijing, 1984), 3–45, Ann. of Math. Stud. 112, Princeton Univ. Press, Princeton, NJ, 1986.
  • R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9) 72 (1993), no. 3, 247–286.
  • R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) 103 (1976), no. 3, 611–635.
  • F. Da Lio and A. Schikorra, $n/p$-harmonic maps: regularity for the sphere case, Adv. Calc. Var. 7 (2014), no. 1, 1–26.
  • L. Grafakos, Modern Fourier Analysis, Second edition, Graduate Texts in Mathematics 250, Springer, New York, 2009.
  • F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une sphère, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 9, 519–524.
  • ––––, Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 8, 591–596.
  • ––––, Harmonic Maps, Conservation Laws and Moving Frames, Second edition, Cambridge Tracts in Mathematics 150, Cambridge University Press, Cambridge, 2002.
  • T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), no. 7, 891–907.
  • C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), no. 4, 527–620.
  • E. Lenzmann and A. Schikorra, Sharp commutator estimates via harmonic extensions, Nonlinear Anal, (In Press).
  • P. Mironescu and E. Russ, Traces of weighted Sobolev spaces. Old and new, Nonlinear Anal. 119 (2015), 354–381.
  • S. Müller, Higher integrability of determinants and weak convergence in $L^1$, J. Reine Angew. Math. 412 (1990), 20–34.
  • Yu. G. Reshetnyak, On the stability of conformal mappings in multidimensional spaces, Siberian Math. J. 8 (1967), no. 1, 69–85.
  • T. Rivière, Conservation laws for conformally invariant variational problems, Invent. Math. 168 (2007), no. 1, 1–22.
  • A. Schikorra, Interior and boundary-regularity for fractional harmonic maps on domains, arXiv:1103.5203.
  • A. Schikorra and P. Strzelecki, Invitation to $H$-systems in higher dimensions: known results, new facts, and related open problems, EMS Surv. Math. Sci. 4 (2017), no. 1, 21–42.
  • W. Sickel and A. Youssfi, The characterisation of the regularity of the Jacobian determinant in the framework of potential spaces, J. London Math. Soc. (2) 59 (1999), no. 1, 287–310.
  • E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series 43, Monographs in Harmonic Analysis III, Princeton University Press, Princeton, NJ, 1993.
  • L. Tartar, The compensated compactness method applied to systems of conservation laws, in: Systems of Nonlinear Partial Differential Equations (Oxford, 1982), 263–285, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 111, Reidel, Dordrecht, 1983.
  • N. Tomita, A Hörmander type multiplier theorem for multilinear operators, J. Funct. Anal. 259 (2010), no. 8, 2028–2044.
  • S. V. Uspenskiĭ, Imbedding theorems for classes with weights, Trudy Mat. Inst. Steklov. 60 (1961), 282–303.
  • H. C. Wente, An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl. 26 (1969), 318–344.