Taiwanese Journal of Mathematics

A Survey of Mathematical Models with Variable Quotas

Feng-Bin Wang and Sze-Bi Hsu

Full-text: Open access

Abstract

In this paper, we shall survey recent developments in variable-internal-stores models with multiple resources or spatial/temporal inhomogeneity, which may enhance coexistence of species and diversity in competitor communities. On the other hand, it was known that basic limiting resources for growth usually include nutrients (e.g., nitrogen and phosphorus), light, and inorganic carbon. Thus, the proposed models will involve the competition between the species for nutrients (e.g., nitrogen and phosphorus), or light, or both of nutrients and light, or inorganic carbon.

Article information

Source
Taiwanese J. Math., Volume 23, Number 2 (2019), 269-291.

Dates
Received: 6 May 2018
Accepted: 26 December 2018
First available in Project Euclid: 15 January 2019

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1547521214

Digital Object Identifier
doi:10.11650/tjm/190102

Mathematical Reviews number (MathSciNet)
MR3936000

Subjects
Primary: 34C12: Monotone systems 34D20: Stability 34D23: Global stability 35K55: Nonlinear parabolic equations 37C65: Monotone flows 92D25: Population dynamics (general)

Keywords
chemostat competitive exclusion coexistence variable quotas spatial variations internal storage positive periodic solution growth for light

Citation

Wang, Feng-Bin; Hsu, Sze-Bi. A Survey of Mathematical Models with Variable Quotas. Taiwanese J. Math. 23 (2019), no. 2, 269--291. doi:10.11650/tjm/190102. https://projecteuclid.org/euclid.twjm/1547521214


Export citation

References

  • R. A. Armstrong and R. McGehee, Competitive exclusion, Am. Nat. 115 (1980), no. 2, 151–170.
  • M. Ballyk, L. Dung, D. A. Jones and Hal L. Smith, Effects of random motility on microbial growth and competition in a flow reactor, SIAM J. Appl. Math. 59 (1998), no. 2, 573–596.
  • J. V. Baxley and S. B. Robinson, Coexistence in the unstirred chemostat, Appl. Math. Comput. 89 (1998), no. 1-3, 41–65.
  • A. Cunningham and R. M. Nisbet, Time lag and co-operativity in the transient growth dynamics of microalgae, J. Theoret. Biol. 84 (1980), no. 2, 189–203.
  • ––––, Transients and oscillations in continuous culture, in: Mathematics in Microbiology, 77–103, Academic Press, London, 1983.
  • O. Diekmann, H. J. A. M. Heijmans and H. R. Thieme, On the stability of the cell size distribution, J. Math. Biol. 19 (1984), no. 2, 227–248.
  • M. R. Droop, Some thoughts on nutrient limitation in algae, J. Phycol. 9 (1973), no. 3, 264–272.
  • Y. Du and S.-B. Hsu, On a nonlocal reaction-diffusion problem arising from the modeling of phytoplankton growth, SIAM J. Math. Anal. 42 (2010), no. 3, 1305–1333.
  • Y. Du and L. Mei, On a nonlocal reaction-diffusion-advection equation modelling phytoplankton dynamics, Nonlinearity 24 (2011), no. 1, 319–349.
  • J. P. Grover, Non-steady state dynamics of algal population growth: experiments with two chlorophytes, J. Phyco. 27 (1991), no. 1, 70–79.
  • ––––, Resource competition in a variable environment: phytoplankton growing according to the variable-internal-stores model, Am. Nat. 138 (1991), no. 4, 811–835.
  • ––––, Constant- and variable-yield models of population growth: responses to environmental variability and implications for competition, J. Theoret. Biol. 158 (1992), no. 4, 409–428.
  • ––––, Resource Competition, Chapman & Hall, London, 1997.
  • ––––, Is storage an adaptation to spatial variation in resource availability? Am. Nat. 173 (2009), no. 2, E44–E61.
  • ––––, Resource storage and competition with spatial and temporal variation in resource availability, Am. Nat. 178 (2011), no. 5, E124–E148.
  • J. P. Grover, K. W. Crane, J. W. Baker, B. W. Brooks and D. L. Roelke, Spatial variation of harmful algae and their toxins in flowing-water habitats: a theoretical exploration, J. Plankton Res. 33 (2010), no. 2, 211–227.
  • J. P. Grover, S.-B. Hsu and F.-B. Wang, Competition and coexistence in flowing habitats with a hydraulic storage zone, Math. Biosci. 222 (2009), no. 1, 42–52.
  • ––––, Competition between microorganisms for a single limiting resource with cell quota structure and spatial variation, J. Math. Biol. 64 (2012), no. 5, 713–743.
  • J. P. Grover and F.-B. Wang, Dynamics of a model of microbial competition with internal nutrient storage in a flowing habitat, Appl. Math. Comput. 225 (2013), 747–764.
  • H. J. A. M. Heijmans, An eigenvalue problem related to cell growth, J. Math. Anal. Appl. 111 (1985), no. 1, 253–280.
  • M. W. Hirsch, H. L. Smith and X.-Q. Zhao, Chain transitivity, attractivity, and strong repellors for semidynamical systems, J. Dynam. Differential Equations 13 (2001), no. 1, 107–131.
  • W. M. Hirsch, H. Hanisch and J.-P. Gabriel, Differential equation models of some parasitic infections: methods for the study of asymptotic behavior, Comm. Pure Appl. Math. 38 (1985), no. 6, 733–753.
  • S. B. Hsu, Limiting behavior for competing species, SIAM J. Appl. Math. 34 (1978), no. 4, 760–763.
  • ––––, A competition model for a seasonally fluctuating nutrient, J. Math. Biol. 9 (1980), no. 2, 115–132.
  • S.-B. Hsu and T.-H. Hsu, Competitive exclusion of microbial species for a single nutrient with internal storage, SIAM J. Appl. Math. 68 (2008), no. 6, 1600–1617.
  • S. B. Hsu, S. Hubbell and P. Waltman, A mathematical theoy for single-nutrient competition in continuous cultures of micro-organisms, SIAM J. Appl. Math. 32 (1977), no. 2, 366–383.
  • S.-B. Hsu, J. Jiang and F.-B. Wang, On a system of reaction-diffusion equations arising from competition with internal storage in an unstirred chemostat, J. Differential Equations 248 (2010), no. 10, 2470–2496.
  • ––––, Reaction¡Vdiffusion equations of two species competing for two complementary resources with internal storage, J. Differential Equations 251 (2011), no. 4-5, 918–940.
  • S.-B. Hsu, K.-Y. Lam and F.-B. Wang, Single species growth consuming inorganic carbon with internal storage in a poorly mixed habitat, J. Math. Biol. 75 (2017), no. 6-7, 1775–1825.
  • S.-B. Hsu and C.-J. Lin, Dynamics of two phytoplankton species competing for light and nutrient with internal storage, Discrete Contin. Dyn. Syst. Ser. S 7 (2014), no. 6, 1259–1285.
  • S.-B. Hsu and Y. Lou, Single phytoplankton species growth with light and advection in a water column, SIAM J. Appl. Math. 70 (2010), no. 8, 2942–2974.
  • S.-B. Hsu, L. Mei and F.-B. Wang, On a nonlocal reaction-diffusion-advection system modelling the growth of phytoplankton with cell quota structure, J. Differential Equations 259 (2015), no. 10, 5353–5378.
  • S.-B. Hsu, J. Shi and F.-B. Wang, Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage, Discrete Contin. Dyn. Syst. Ser. B 19 (2014), no. 10, 3169–3189.
  • S. B. Hsu, H. L. Smith and P. Waltman, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces, Trans. Amer. Math. Soc. 348 (1996), no. 10, 4083–4094.
  • S. B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an unstirred chemostat, SIAM J. Appl. Math. 53 (1993), no. 4, 1026–1044.
  • S.-B. Hsu, F.-B. Wang and X.-Q. Zhao, Competition for two essential resources with internal storage and periodic input, Differential Integral Equations 29 (2016), no. 7-8, 601–630.
  • J. Huisman, P. van Oostveen and F. J. Weissing, Species dynamics in phytoplankton blooms: incomplete mixing and competition for light, Am. Nat. 154 (1999), no. 1, 46–68.
  • G. E. Hutchinson, The paradox of the plankton, Am. Nat. 95 (1961), no. 882, 137–145.
  • J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems, Second edition, Cambridge University Press, Cambridge, 1994.
  • C. A. Klausmeier, E. Litchman and S. A. Levin, Phytoplankton growth and stoichiometry under multiple nutrient limitation, Limnol. Oceanogr. 49 (2004), 1463–1470.
  • P. De Leenheer, S. A. Levin, E. D. Sontag and C. A. Klausmeier, Global stability in a chemostat with multiple nutrients, J. Math. Biol. 52 (2006), no. 4, 419–438.
  • B. Li and H. L. Smith, Global dynamics of microbial competition for two resources with internal storage, J. Math. Biol. 55 (2007), no. 4, 481–515.
  • E. Litchman and C. A. Klausmeier, Competition of phytoplankton under fluctuating light, Am. Nat. 157 (2001), no. 2, 170–187.
  • J. Mallet-Paret and R. D. Nussbaum, Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index, J. Fixed Point Theory Appl. 7 (2010), no. 1, 103–143.
  • L. Mei, S.-B. Hsu and F.-B. Wang, Growth of single phytoplankton species with internal storage in a water column, Discrete Contin. Dyn. Syst. Ser. B 21 (2016), no. 2, 607–620.
  • J. A. J. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomathematics 68, Springer-Verlag, Berlin, 1986.
  • H. Nie, S.-B. Hsu, J. P. Grover, Algal competition in a water column with excessive dioxide in the atmosphere, J. Math. Biol. 72 (2016), no. 7, 1845–1892.
  • J. Passarge, S. Hol, M. Escher and J. Huisman, Competition for nutrients and light: stable coexistence, alternative stable states, or competitive exclusion? Ecol. Monograph. 76 (2006), no. 1, 57–72.
  • H. L. Smith, The periodically forced Droop model for phytoplankton growth in a chemostat, J. Math. Biol. 35 (1997), no. 5, 545–556.
  • H. L. Smith and P. Waltman, Competition for a single limiting resource in continuous culture: the variable-yield model, SIAM J. Appl. Math. 54 (1994), no. 4, 1113–1131.
  • ––––, The Theory of the Chemostat, Cambridge Studies in Mathematical Biology 13, Cambridge University Press, Cambridge, 1995.
  • H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol. 30 (1992), no. 7, 755–763.
  • D. Tilman, Resource Competition and Community Structure, Princeton University Press, Princeton, New Jersey, 1982.
  • Dedmer B Van de Waal, Jolanda MH Verspagen, Jan F Finke, Vasiliki Vournazou, Anne K Immers, W Edwin A Kardinaal, Linda Tonk, Sven Becker, Ellen Van Donk, Petra M Visser and Jef Huisman, Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2, ISME J. 5 (2011), no. 9, 1438–1450.
  • M. C. White and X.-Q. Zhao, A periodic Droop model for two species competition in a chemostat, Bull. Math. Biol. 71 (2009), no. 1, 145–161.
  • K. Yoshiyama, J. P. Mellard, E. Litchman and C. A. Klausmeier, Phytoplankton competition for nutrients and light in a stratified water column, Am. Nat. 174 (2009), no. 2, 190–203.
  • X.-Q. Zhao, Dynamical Systems in Population Biology, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC 16, Springer-Verlag, New York, 2003.