Taiwanese Journal of Mathematics

A Multiplicity Result for a Non-local Critical Problem

Hui Guo and Tao Wang

Advance publication

This article is in its final form and can be cited using the date of online publication and the DOI.

Full-text: Open access


In this paper, we are interested in the multiple solutions of the following fractional critical problem \[ \begin{cases} (-\Delta)^s u = |u|^{2_s^*-2} u + \lambda u &\textrm{in $\Omega$}, \\ u = 0 &\textrm{on $\mathbb{R}^N \setminus \Omega$}, \end{cases} \] where $s \in (0,1)$, $N \gt 4s$, $2^*_s = 2N/(N-2s)$, $\Omega$ is a smooth bounded domain in $\mathbb{R}^N$ and $(-\Delta)^s$ is the fractional Laplace operator. Because the nonlocal property of fractional Laplacian makes the variational functional of the fractional critical problem different from the one of local operator $-\Delta$. To the best of our knowledge, it is still unknown whether multiple solutions of the fractional critical problem exist for all $\lambda \gt 0$. In this paper, we give a partial answer. Precisely, by introducing some new ideas and careful estimates, we prove that for any $s \in (0,1)$, the fractional critical problem has at least $[(N+1)/2]$ pairs of nontrivial solutions if $0 \lt \lambda \neq \lambda_n$, and has $[(N+1-l)/2]$ pairs if $\lambda = \lambda_n$ with multiplicity number $0 \lt l \lt \min \{n,N+2\}$, via constraint method and Krasnoselskii genus. Here $\lambda_n$ denotes the $n$-th eigenvalue of $(-\Delta)^s$ with zero Dirichlet boundary data in $\Omega$ and $[a]$ denotes the least positive integer $k$ such that $k \geq a$.

Article information

Taiwanese J. Math., Advance publication (2019), 33 pages.

First available in Project Euclid: 6 December 2018

Permanent link to this document

Digital Object Identifier

Primary: 35J20: Variational methods for second-order elliptic equations 35J60: Nonlinear elliptic equations 35J67: Boundary values of solutions to elliptic equations 35R11: Fractional partial differential equations

multiple solutions minimax methods genus critical growth nonlocal operator


Guo, Hui; Wang, Tao. A Multiplicity Result for a Non-local Critical Problem. Taiwanese J. Math., advance publication, 6 December 2018. doi:10.11650/tjm/181201. https://projecteuclid.org/euclid.twjm/1544086876

Export citation


  • D. Applebaum, Lévy processes–-from probability to finance and quantum groups, Notices Amer. Math. Soc. 51 (2004), no. 11, 1336–1347.
  • B. Barrios, E. Colorado, A. D. Pablo and U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations 252 (2012), no. 11, 6133–6162.
  • H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437–477.
  • X. Cabré and J.-M. Roquejoffre, The innfluence of fractional diffusion in Fisher-KPP equations, Comm. Math. Phys. 320 (2013), no. 3, 679–722.
  • L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7-9 1245–1260.
  • A. Capozzi, D. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), no. 6, 463–470.
  • W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math. 59 (2006), no. 3, 330–343.
  • Z. Chen, N. Shioji and W. Zou, Ground state and multiple solutions for a critical exponent problem, NoDEA Nonlinear Differential Equations Appl. 19 (2012), no. 3, 253–277.
  • W. Choi and J. Seok, Infinitely many solutions for semilinear nonlocal elliptic equations under noncompact settings, arXiv:1404.1132.
  • M. Clapp and T. Weth, Multiple solutions for the Brezis-Nirenberg problem, Adv. Differential Equations 10 (2005), no. 4, 463–480.
  • A. Cotsiolis and N. K. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl. 295 (2004), no. 1, 225–236.
  • G. Devillanova and S. Solimini, Concentration estimates and multiple solutions to elliptic problems at critical growth, Adv. Differential Equations 7 (2002), no. 10, 1257–1280.
  • ––––, A multiplicity result for elliptic equations at critical growth in low dimension, Commun. Contemp. Math. 5 (2003), no. 2, 171–177.
  • A. Fiscella, G. Molica Bisci and R. Servadei, Bifurcation and multiplicity results for critical nonlocal fractional Laplacian problems, Bull. Sci. Math. 140 (2016), no. 1, 14–35.
  • H. Guo, Multiple solutions for Brezis-Nirenberg problems with fractional Laplacian, Electron. J. Differential Equations 2016 (2016), no. 153, 20 pp.
  • Y. Y. Li, Remark on some conformally invariant integral equations: the method of moving spheres, J. Eur. Math. Soc. (JEMS) 6 (2004), no. 2, 153–180.
  • R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), no. 1, 77 pp.
  • S. Mosconi, N. Shioji and M. Squassina, Nonlocal problems at critical growth in contractible domains, Asymptot. Anal. 95 (2015), no. 1-2, 79–100.
  • E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521–573.
  • G. Palatucci and A. Pisante, A global compactness type result for Palais-Smale sequences in fractional Sobolev spaces, Nonlinear Anal. 117 (2015), 1–7.
  • R. Servadei, The Yamabe equation in a non-local setting, Adv. Nonlinear Anal. 2 (2013), no. 3, 235–270.
  • ––––, A critical fractional Laplace equation in the resonant case, Topol. Methods Nonlinear Anal. 43 (2014), no. 1, 251–267.
  • R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst. 33 (2013), no. 5, 2105–2137.
  • ––––, A Brezis-Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal. 12 (2013), no. 6, 2445–2464.
  • ––––, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc. 367 (2015), no. 1, 67–102.
  • ––––, Fractional Laplacian equations with critical Sobolev exponent, Rev. Mat. Complut. 28 (2015), no. 3, 655–676.
  • M. Struwe, Variational Methods: Applications to nonlinear partial differential equations and Hamiltonian systems, Second edition, Results in Mathematics and Related Areas (3) 34, Springer-Verlag, Berlin, 1996.
  • D. Zhang, On multiple solutions of $\Delta u + \lambda u + |u|^{4/(n-2)} u = 0$, Nonlinear Anal. 13 (1989), no. 4, 353–372.