Taiwanese Journal of Mathematics

Characterization of Temperatures Associated to Schrödinger Operators with Initial Data in Morrey Spaces

Qiang Huang and Chao Zhang

Advance publication

This article is in its final form and can be cited using the date of online publication and the DOI.

Full-text: Open access

Abstract

Let $\mathcal{L}$ be a Schrödinger operator of the form $\mathcal{L} = -\Delta + V$ acting on $L^2(\mathbb{R}^n)$ where the nonnegative potential $V$ belongs to the reverse Hölder class $B_q$ for some $q \geq n$. Let $L^{p,\lambda}(\mathbb{R}^{n})$, $0 \leq \lambda \lt n$ denote the Morrey space on $\mathbb{R}^{n}$. In this paper, we will show that a function $f \in L^{2,\lambda}(\mathbb{R}^{n})$ is the trace of the solution of $\mathbb{L}u := u_{t} + \mathcal{L}u = 0$, $u(x,0) = f(x)$, where $u$ satisfies a Carleson-type condition \[ \sup_{x_B,r_B} r_B^{-\lambda} \int_0^{r_B^2} \!\! \int_{B(x_B,r_B)} |\nabla u(x,t)|^2 \, dx dt \leq C \lt \infty. \] Conversely, this Carleson-type condition characterizes all the $\mathbb{L}$-carolic functions whose traces belong to the Morrey space $L^{2,\lambda}(\mathbb{R}^{n})$ for all $0 \leq \lambda \lt n$. This result extends the analogous characterization found by Fabes and Neri in [8] for the classical BMO space of John and Nirenberg.

Article information

Source
Taiwanese J. Math., Advance publication (2019), 19 pages.

Dates
First available in Project Euclid: 21 November 2018

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1542790913

Digital Object Identifier
doi:10.11650/tjm/181106

Subjects
Primary: 42B35: Function spaces arising in harmonic analysis 42B37: Harmonic analysis and PDE [See also 35-XX] 35J10: Schrödinger operator [See also 35Pxx] 47F05: Partial differential operators [See also 35Pxx, 58Jxx] (should also be assigned at least one other classification number in section 47)

Keywords
Dirichlet problem heat equation Schrödinger operators Morrey space Carleson measure reverse Hölder inequality

Citation

Huang, Qiang; Zhang, Chao. Characterization of Temperatures Associated to Schrödinger Operators with Initial Data in Morrey Spaces. Taiwanese J. Math., advance publication, 21 November 2018. doi:10.11650/tjm/181106. https://projecteuclid.org/euclid.twjm/1542790913


Export citation

References

  • M. Dindos, C. Kenig and J. Pipher, BMO solvability and the $A_{\infty}$ condition for elliptic operators, J. Geom. Anal. 21 (2011), no. 1, 78–95.
  • X. T. Duong, J. Xiao and L. Yan, Old and new Morrey spaces with heat kernel bounds, J. Fourier Anal. Appl. 13 (2007), no. 1, 87–111.
  • X. T. Duong and L. Yan, New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications, Comm. Pure Appl. Math. 58 (2005), no. 10, 1375–1420.
  • ––––, Duality of Hardy and BMO spaces associated with operators with heat kernel bounds, J. Amer. Math. Soc. 18 (2005), no. 4, 943–973.
  • X. T. Duong, L. Yan and C. Zhang, On characterization of Poisson integrals of Schrödinger operators with BMO traces, J. Funct. Anal. 266 (2014), no. 4, 2053–2085.
  • J. Dziubański, G. Garrigós, T. Martínez, J. L. Torrea and J. Zienkiewicz, BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z. 249 (2005), no. 2, 329–356.
  • E. B. Fabes, R. L. Johnson and U. Neri, Spaces of harmonic functions representable by Poisson integrals of functions in BMO and $L_{p,\lambda}$, Indiana Univ. Math. J. 25 (1976), no. 2, 159–170.
  • E. B. Fabes and U. Neri, Characterization of temperatures with initial data in BMO, Duke Math. J. 42 (1975), no. 4, 725–734.
  • ––––, Dirichlet problem in Lipschitz domains with BMO data, Proc. Amer. Math. Soc. 78 (1980), no. 1, 33–39.
  • C. Fefferman and E. M. Stein, $H^p$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193.
  • W. Gao and Y. Jiang, $L^p$ estimate for parabolic Schrödinger operator with certain potentials, J. Math. Anal. Appl. 310 (2005), no. 1, 128–143.
  • F. W. Gehring, The $L^p$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265–277.
  • S. Hofmann, G. Lu, D. Mitrea, M. Mitrea and L. Yan, Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates, Mem. Amer. Math. Soc. 214 (2011), no. 1007, 78 pp.
  • S. Hofmann, S. Mayboroda and M. Mourgoglou, Layer potentials and boundary value problems for elliptic equations with complex $L^{\infty}$ coefficients satisfying the small Carleson measure norm condition, Adv. Math. 270 (2015), 480–564.
  • R. Jiang, J. Xiao and D. Yang, Towards spaces of harmonic functions with traces in square Campanato spaces and their scaling invariants, Anal. Appl. (Singap.) 14 (2016), no. 5, 679–703.
  • T. Ma, P. R. Stinga, J. L. Torrea and C. Zhang, Regularity properties of Schrödinger operators, J. Math. Anal. Appl. 388 (2012), no. 2, 817–837.
  • ––––, Regularity estimates in Hölder spaces for Schrödinger operators via a $T1$ theorem, Ann. Mat. Pura Appl. (4) 193 (2014), no. 2, 561–589.
  • C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), no. 1, 126–166.
  • Z. Shen, $L^p$ estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 2, 513–546.
  • L. Song, X. X. Tian and L. X. Yan, On characterization of Poisson integrals of Schrödinger operators with Morrey traces, Acta Math. Sin. (Engl. Ser.) 34 (2018), no. 4, 787–800.
  • E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Annals of Mathematics Studies 63, Princeton University Press, Princeton, N.J., 1970.
  • E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series 32, Princeton University Press, Princeton, N.J., 1971.
  • L. Tang and J. Han, $L^p$ boundedness for parabolic Schrödinger type operators with certain nonnegative potentials, Forum Math. 23 (2011), no. 1, 161–179.
  • L. Wu and L. Yan, Heat kernels, upper bounds and Hardy spaces associated to the generalized Schrödinger operators, J. Funct. Anal. 270 (2016), no. 10, 3709–3749.
  • M. Yang and C. Zhang, Characterization of temperatures associated to Schrödinger operators with initial data in BMO spaces, arXiv:1710.01160.
  • W. Yuan, W. Sickel and D. Yang, Morrey and Campanato meet Besov, Lizorkin and Triebel, Lecture Notes in Mathematics 2005, Springer-Verlag, Berlin, 2010.