Taiwanese Journal of Mathematics

Bound Estimations on the Eigenvalues for Fan Product of $M$-tensors

Gang Wang, Yiju Wang, and Lixia Liu

Full-text: Open access

Abstract

In this paper, we first explore some properties of $M$-tensors by showing that the Fan product of two $M$-tensors is an $M$-tensor, then establish lower bound estimations and upper bound estimations on the minimal eigenvalues of for Fan product of two $M$-tensors. Some inclusion relations among them are also obtained.

Article information

Source
Taiwanese J. Math., Volume 23, Number 3 (2019), 751-766.

Dates
Received: 10 November 2017
Revised: 20 July 2018
Accepted: 9 September 2018
First available in Project Euclid: 26 September 2018

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1537927425

Digital Object Identifier
doi:10.11650/tjm/180905

Mathematical Reviews number (MathSciNet)
MR3952250

Zentralblatt MATH identifier
07068573

Subjects
Primary: 15A18: Eigenvalues, singular values, and eigenvectors 15A69: Multilinear algebra, tensor products

Keywords
nonnegative tensors Fan product $M$-tensors

Citation

Wang, Gang; Wang, Yiju; Liu, Lixia. Bound Estimations on the Eigenvalues for Fan Product of $M$-tensors. Taiwanese J. Math. 23 (2019), no. 3, 751--766. doi:10.11650/tjm/180905. https://projecteuclid.org/euclid.twjm/1537927425


Export citation

References

  • K. C. Chang, K. Pearson and T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci. 6 (2008), no. 2, 507–520.
  • H. Chen and Y. Wang, On computing minimal $H$-eigenvalue of sign-structured tensors, Front. Math. China. 12 (2017), no. 6, 1289–1302.
  • W. Ding, L. Qi and Y. Wei, $\mathcal{M}$-tensors and nonsingular $\mathcal{M}$-tensors, Linear Algebra Appl. 439 (2013), no. 10, 3264–3278.
  • F. Fang, Bounds on eigenvalues of the Hadamard product and the Fan product of matrices, Linear Algebra Appl. 425 (2007), no. 1, 7–15.
  • S. Friedland, S. Gaubert and L. Han, Perron-Frobenius theorem for nonnegative multilinear forms and extensions, Linear Algebra Appl. 438 (2013), no. 2, 738–749.
  • L. Gao and D. Wang, Input-to-state stability and integral input-to-state stability for impulsive switched systems with time-delay under asynchronous switching, Nonlinear Anal. Hybrid Syst. 20 (2016), 55–71.
  • L. Gao, D. Wang and G. Wang, Further results on exponential stability for impulsive switched nonlinear time-delay systems with delayed impulse effects, Appl. Math. Comput. 268 (2015), 186–200.
  • R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
  • S. Hu, Z. Huang and L. Qi, Strictly nonnegative tensors and nonnegative tensor partition, Sci. China. Math. 57 (2014), no. 1, 181–195.
  • R. Huang, Some inequalities for the Hadamard product and the Fan product of matrices, Linear Algebra Appl. 428 (2008), no. 7, 1551–1559.
  • Y.-T. Li, F.-B. Chen and D.-F. Wang, New lower bounds on eigenvalue of the Hadamard product of an $M$-matrix and its inverse, Linear Algebra Appl. 430 (2009), no. 4, 1423–1431.
  • Q. Liu, G. Chen and L. Zhao, Some new bounds on the spectral radius of matrices, Linear Algebra Appl. 432 (2010), no. 4, 936–948.
  • M. Ng, L. Qi and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl. 31 (2009), no. 3, 1090–1099.
  • Q. Ni, L. Qi and F. Wang, An eigenvalue method for testing positive definiteness of a multivariate form, IEEE Trans. Automat. Control 53 (2008), no. 5, 1096–1107.
  • L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput. 40 (2005), no. 6, 1302–1324.
  • M. Rajesh Kannan, N. Shaked-Monderer and A. Berman, On weakly irreducible nonnegative tensors and interval hull of some classes of tensors, Linear Multilinear Algebra 64 (2016), no. 4, 667–679.
  • L. Sun, B. Zheng, J. Zhou and H. Yan, Some inequalities for the Hadamard product of tensors, Linear Multilinear Algebra 66 (2018), no. 6, 1199–1214.
  • Y. Wang, L. Caccetta and G. Zhou, Convergence analysis of a block improvement method for polynomial optimization over unit spheres, Numer. Linear Algebra Appl. 22 (2015), no. 6, 1059–1076.
  • Y. Wang, K. Zhang and H. Sun, Criteria for strong $H$-tensors, Front. Math. China. 11 (2016), no. 3, 577–592.
  • G. Wang, G. Zhou and L. Caccetta, $Z$-eigenvalue inclusion theorems for tensors, Discrete Contin. Dyn. Syst. Ser. B 22 (2017), no. 1, 187–198.
  • ––––, Sharp Brauer-type eigenvalue inclusion theorems for tensors, Pac. J. Optim. 14 (2018), no. 2, 227–244.
  • Y. Yang and Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM J. Matrix Anal. Appl. 31 (2010), no. 5, 2517–2530.
  • L. Zhang, L. Qi and G. Zhou, $M$-tensors and some applications, SIAM J. Matrix Anal. Appl. 35 (2014), no. 2, 437–452.
  • K. Zhang and Y. Wang, An $H$-tensor based iterative scheme for identifying the positive definiteness of multivariate homogeneous forms, J. Comput. Appl. Math. 305 (2016), 1–10.
  • D. Zhou, G. Chen, G. Wu and X. Zhang, On some new bounds for eigenvalues of the Hadamard product and the Fan product of matrices, Linear Algebra Appl. 438 (2013), no. 3, 1415–1426.