Taiwanese Journal of Mathematics

A Note on Modularity Lifting Theorems in Higher Weights

Yih-Jeng Yu

Full-text: Open access

Abstract

We follow the ideas of Khare and Ramakrishna-Khare and prove the modularity lifting theorem in higher weights. This approach somehow differs from that using Taylor-Wiles systems.

Article information

Source
Taiwanese J. Math., Volume 22, Number 2 (2018), 275-300.

Dates
Received: 19 February 2017
Revised: 8 June 2017
Accepted: 11 June 2017
First available in Project Euclid: 8 September 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1504836034

Digital Object Identifier
doi:10.11650/tjm/8147

Mathematical Reviews number (MathSciNet)
MR3780717

Zentralblatt MATH identifier
06965370

Subjects
Primary: 11F80: Galois representations 11G18: Arithmetic aspects of modular and Shimura varieties [See also 14G35] 14D05: Structure of families (Picard-Lefschetz, monodromy, etc.) 14F05: Sheaves, derived categories of sheaves and related constructions [See also 14H60, 14J60, 18F20, 32Lxx, 46M20] 14G35: Modular and Shimura varieties [See also 11F41, 11F46, 11G18]

Keywords
modularity lifting theorems Hecke algebras Shimura curves vanishing cycles monodromy Galois representations Ramakrishna-Khare systems Čerednik-Drinfel'd uniformizations

Citation

Yu, Yih-Jeng. A Note on Modularity Lifting Theorems in Higher Weights. Taiwanese J. Math. 22 (2018), no. 2, 275--300. doi:10.11650/tjm/8147. https://projecteuclid.org/euclid.twjm/1504836034


Export citation

References

  • G. Böckle, A local-to-global principle for deformations of Galois representations, J. Reine Angew. Math. 509 (1999), 199–236.
  • ––––, On the isomorphism $R_{\phi} \to T_{\phi}$, Invent. Math. 154 (2003), 218–222.
  • J.-F. Boutot and H. Carayol, Uniformisation $p$-adique des courbes de Shimura: les théorèmes de Čerednik et de Drinfel'd, Astérisque 7 (1992), 45–158.
  • K. Buzzard, Integral models of certain Shimura curves, Duke Math. J. 87 (1997), no. 3, 591–612.
  • H. Carayol, Sur la mauvaise réduction des courbes de Shimura, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 13, 557–560.
  • ––––, Sur la mauvaise réduction des courbes de Shimura, Compositio Math. 59 (1986), no. 2, 151–230.
  • ––––, Sur les représentations $l$-adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 409–468.
  • ––––, Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet, in $p$-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), 213–237, Contemp. Math. 165, Amer. Math. Soc., Providence, RI, 1994.
  • F. Diamond, On deformation rings and Hecke rings, Ann. of Math. (2) 144 (1996), no. 1, 137–166.
  • F. Diamond and R. Taylor, Lifting modular mod $l$ representations, Duke Math. J. 74 (1994), no. 2, 253–269.
  • M. Harris and R. Taylor, Regular models of certain Shimura varieties, Asian J. Math. 6 (2002), no. 1, 61–94.
  • L. Illusie, Réalisation $l$-adique de l'accouplement de monodromie d'après A. Grothendieck, Astérisque 7 (1992), 27–44.
  • C. Khare, On isomorphisms between deformation rings and Hecke rings, Invent. Math. 154 (2003), no. 1, 199–222.
  • C. Khare and R. Ramakrishna, Finiteness of Selmer groups and deformation rings, Invent. Math. 154 (2003), no. 1, 179–198.
  • B. Mazur, An introduction to the deformation theory of Galois representations, in Modular forms and Fermat's Last Theorem (Boston, MA, 1995), 243–311, Springer, New York, 1997.
  • L. Nyssen, Pseudo-représentations, Math. Ann. 306 (1996), no. 2, 257–283.
  • R. Ramakrishna, On a variation of Mazur's deformation functor, Compositio Math. 87 (1993), no. 3, 269–286.
  • K. A. Ribet, On modular representations of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ arising from modular forms, Invent. Math. 100 (1990), no. 2, 431–476.
  • K. A. Ribet and S. Takahashi, Parametrizations of elliptic curves by Shimura curves and by classical modular curves, Proc. Nat. Acad. Sci. U.S.A. 94 (1997), no. 21, 11110–11114.
  • R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), no. 3, 553–572.
  • A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443–551.
  • L. Yang, Multiplicities of galois representations in the higher weight sheaf cohomology associated to shimura curves, Ph.D. thesis, City University of New York, 1996.