Taiwanese Journal of Mathematics

Recovery of the Schrödinger Operator on the Half-line from a Particular Set of Eigenvalues

Xiao-Chuan Xu and Chuan-Fu Yang

Full-text: Open access

Abstract

In this work, we study the Schrödinger operator on the half-line with a selfadjoint boundary condition. We prove that a particular set of eigenvalues can uniquely determine the potential. The reconstruction algorithm for recovering the potential from the particular data is provided.

Article information

Source
Taiwanese J. Math., Volume 21, Number 6 (2017), 1325-1334.

Dates
Received: 20 June 2016
Revised: 24 February 2017
Accepted: 12 March 2017
First available in Project Euclid: 17 August 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1502935249

Digital Object Identifier
doi:10.11650/tjm/8026

Mathematical Reviews number (MathSciNet)
MR3732908

Zentralblatt MATH identifier
06871371

Subjects
Primary: 34A55: Inverse problems 34B24: Sturm-Liouville theory [See also 34Lxx] 47E05: Ordinary differential operators [See also 34Bxx, 34Lxx] (should also be assigned at least one other classification number in section 47)

Keywords
Schrödinger operator on the half-line inverse eigenvalue problem reconstruction algorithm

Citation

Xu, Xiao-Chuan; Yang, Chuan-Fu. Recovery of the Schrödinger Operator on the Half-line from a Particular Set of Eigenvalues. Taiwanese J. Math. 21 (2017), no. 6, 1325--1334. doi:10.11650/tjm/8026. https://projecteuclid.org/euclid.twjm/1502935249


Export citation

References

  • T. Aktosun, Inverse scattering for vowel articulation with frequency-domain data, Inverse Problems 21 (2005), no. 3, 899–914. https://doi.org/10.1088/0266-5611/21/3/007
  • T. Aktosun, P. Sacks and M. Unlu, Inverse problems for selfadjoint Schrödinger operators on the half line with compactly supported potentials, J. Math. Phys. 56 (2015), no. 2, 022106, 33 pp. https://doi.org/10.1063/1.4907558
  • T. Aktosun and R. Weder, Inverse spectral-scattering problem with two sets of discrete spectra for the radial Schrödinger equation, Inverse Problems 22 (2006), no. 1, 89–114. https://doi.org/10.1088/0266-5611/22/1/006
  • B. J. Forbes, E. R. Pike and D. B. Sharp, The acoustical Klein-Gordon equation: The wave-mechanical step and barrier potential functions, J. Acoust. Soc. Am. 114 (2003), no. 3, 1291–1302. https://doi.org/10.1121/1.1590314
  • G. Freiling and V. Yurko, Inverse Sturm-Liouville Problems and Their Applications, Nova Science Publishers, Huntington, NY, 2001.
  • F. Gesztesy and B. Simon, A new approach to inverse spectral theory, II: General real potentials and the connection to the spectral measure, Ann. of Math. 152 (2000), no. 2, 593–643. https://doi.org/10.2307/2661393
  • E. Korotyaev, Inverse resonance scattering on the half line, Asymptot. Anal. 37 (2004), no. 3-4, 215–226.
  • V. A. Marchenko, Sturm-Liouville Operators and Applications, Operator Theory: Advances and Applictions 22, Birkhäuser Verlag, Basel, 1986. https://doi.org/10.1007/978-3-0348-5485-6
  • J. R. McLaughlin and W. Rundell, A uniqueness theorem for an inverse Sturm-Liouville problem, J. Math. Phys. 28 (1987), no. 7, 1471–1472. https://doi.org/10.1063/1.527500
  • A. G. Ramm, Property C for ordinary differential equations and applications to inverse scattering, Z. Anal. Anwendungen 18 (1999), no. 2, 331–348. https://doi.org/10.4171/zaa/885
  • ––––, One-dimensional inverse scattering and spectral problems, Cubo 6 (2004), no. 1, 313–426.
  • ––––, Recovery of the potential from $I$-function, Rep. Math. Phys. 74 (2014), no. 2, 135–143. https://doi.org/10.1016/s0034-4877(14)00020-2
  • A. G. Ramm and B. Simon, A new approach to inverse spectral theory, III: Short-range potentials, J. Anal. Math. 80 (2000), no. 1, 319–334. https://doi.org/10.1007/bf02791540
  • X.-C. Xu, C.-F. Yang and H.-Z. You, Inverse spectral analysis for Regge problem with partial information on the potential, Results Math. 71 (2017), no. 3-4, 983–996. https://doi.org/10.1007/s00025-015-0523-6
  • V. Yurko, Method of Spectral Mappings in the Inverse Problem Theory, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2002. https://doi.org/10.1515/9783110940961