Taiwanese Journal of Mathematics

The Bressoud-Göllnitz-Gordon Theorem for Overpartitions of Even Moduli

Thomas Yao He, Allison Yi Fang Wang, and Alice Xiao Hua Zhao

Full-text: Open access


We give an overpartition analogue of Bressoud's combinatorial generalization of the Göllnitz-Gordon theorem for even moduli in general case. Let $\widetilde{O}_{k,i}(n)$ be the number of overpartitions of $n$ whose parts satisfy certain difference condition and $\widetilde{P}_{k,i}(n)$ be the number of overpartitions of $n$ whose non-overlined parts satisfy certain congruence condition. We show that $\widetilde{O}_{k,i}(n) = \widetilde{P}_{k,i}(n)$ for $1 \leq i \lt k$.

Article information

Taiwanese J. Math., Volume 21, Number 6 (2017), 1233-1263.

Received: 26 December 2016
Revised: 16 March 2017
Accepted: 26 March 2017
First available in Project Euclid: 17 August 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 05A17: Partitions of integers [See also 11P81, 11P82, 11P83] 11P84: Partition identities; identities of Rogers-Ramanujan type

the Bressoud-Göllnitz-Gordon theorem overpartition Bailey pair Göllnitz-Gordon marking


He, Thomas Yao; Wang, Allison Yi Fang; Zhao, Alice Xiao Hua. The Bressoud-Göllnitz-Gordon Theorem for Overpartitions of Even Moduli. Taiwanese J. Math. 21 (2017), no. 6, 1233--1263. doi:10.11650/tjm/8043. https://projecteuclid.org/euclid.twjm/1502935246

Export citation


  • A. K. Agarwal, G. E. Andrews and D. M. Bressoud, The Bailey lattice, J. Indian. Math. Soc. (N.S.) 51 (1987), 57–73.
  • G. E. Andrews, A generalization of the Göllnitz-Gordon partition theorems, Proc. Amer. Math. Soc. 18 (1967), 945–952.
  • ––––, The Theory of Partitions, Encyclopedia of Mathematics and its Applications 2, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976.
  • ––––, Multiple series Rogers-Ramanujan type identities, Pacific J. Math. 114 (1984), no. 2, 267–283.
  • ––––, $q$-Series: Their development and application in analysis, number theory, combinatorics, physics, and computer algebra, CBMS Regional Conference Series in Mathematics 66, American Mathematical Society, Providence, RI, 1986.
  • W. N. Bailey, Identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 50 (1948), 1–10.
  • D. M. Bressoud, A generalization of the Rogers-Ramanujan identities for all moduli, J. Combin. Theory Ser. A 27 (1979), no. 1, 64–68.
  • ––––, Analytic and combinatorial generalizations of the Rogers-Ramanujan identities, Mem. Amer. Math. Soc. 24 (1980), no. 227, 54 pp.
  • D. M. Bressoud, M. E. H. Ismail and D. Stanton, Change of base in Bailey pairs, Ramanujan J. 4 (2000), no. 4, 435–453.
  • W. Y. C. Chen, D. D. M. Sang and D. Y. H. Shi, The Rogers-Ramanujan-Gordon theorem for overpartitions, Proc. Lond. Math. Soc. (3) 106 (2013), no. 6, 1371–1393.
  • ––––, An overpartition analogue of Bressoud's theorem of Rogers-Ramanujan-Gordon type, Ramanujan J. 36 (2015), no. 1-2, 69–80.
  • H. Göllnitz, Einfache Partitionen, Diplomarbeit W. S. Göttingen, 1960, 65 pp.
  • ––––, Partitionen mit Differenzenbedingungen, J. Reine Angew. Math. 225 (1967), 154–190.
  • B. Gordon, A combinatorial generalization of the Rogers-Ramanujan identities, Amer. J. Math 83 (1961), 393–399.
  • ––––, Some Ramanujan-like continued fractions, Abstracts of Short Communications. Int. 1962 Congr. of Math., Stockholm, 1962, 29–30.
  • ––––, Some continued fractions of the Rogers-Ramanujan type, Duke Math. J. 32 (1965), 741–748.
  • T. Y. He, K. Q. Ji, A. Y. F. Wang and A. X. H. Zhao, The Andrews-Göllnitz-Gordon theorem for overpartitions, arXiv:1612.04960.
  • K. Kurşungöz, Parity considerations in Andrews-Gordon identities, and the $k$-marked Durfee symbols, Thesis (Ph.D.)-The Pennsylvania Sate University, 2009.
  • ––––, Parity considerations in Andrews-Gordon identities, European J. Combin. 31 (2010), no. 3, 976–1000.
  • P. Paule, On identities of the Rogers-Ramanujan type, J. Math. Anal. Appl. 107 (1985), no. 1, 255–284.
  • ––––, A note on Bailey's lemma, J. Combin. Theory Ser. A 44 (1987), no. 1, 164–167.
  • L. J. Rogers, Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. S1-25 (1894), no. 1, 318–343.
  • D. D. M. Sang and D. Y. H. Shi, An Andrews-Gordon type identity for overpartitions, Ramanujan J. 37 (2015), no. 3, 653–679.
  • L. J. Slater, A new proof of Rogers's transformations of infinite series, Proc. London Math. Soc. (2) 53 (1951), 460–475.