Taiwanese Journal of Mathematics

$\tau$-rigid Modules over Auslander Algebras

Xiaojin Zhang

Full-text: Open access

Abstract

We give a characterization of $\tau$-rigid modules over Auslander algebras in terms of projective dimension of modules. Moreover, we show that for an Auslander algebra $\Lambda$ admitting finite number of non-isomorphic basic tilting $\Lambda$-modules and tilting $\Lambda^{\operatorname{op}}$-modules, if all indecomposable $\tau$-rigid $\Lambda$-modules of projective dimension $2$ are of grade $2$, then $\Lambda$ is $\tau$-tilting finite.

Article information

Source
Taiwanese J. Math., Volume 21, Number 4 (2017), 727-738.

Dates
Received: 6 April 2016
Revised: 21 June 2016
Accepted: 4 December 2016
First available in Project Euclid: 27 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1501120830

Digital Object Identifier
doi:10.11650/tjm/7902

Mathematical Reviews number (MathSciNet)
MR3684383

Zentralblatt MATH identifier
06871342

Subjects
Primary: 16G10: Representations of Artinian rings 16E10: Homological dimension

Keywords
Auslander algebra $\tau$-rigid module tilting module

Citation

Zhang, Xiaojin. $\tau$-rigid Modules over Auslander Algebras. Taiwanese J. Math. 21 (2017), no. 4, 727--738. doi:10.11650/tjm/7902. https://projecteuclid.org/euclid.twjm/1501120830


Export citation

References

  • T. Adachi, The classification of $\tau$-tilting modules over Nakayama algebras, J. Algebra 452 (2016), 227–262.
  • ––––, Characterizing $\tau$-rigid-finite algebras with radical square zero, Proc. Amer Math. Soc. 144 (2016), no. 11, 4673–4685.
  • T. Adachi, T. Aihara and A. Chan, Classification of two-term tilting complexes over Brauer graph algebras. arXiv:1504.04827
  • T. Adachi, O. Iyama and I. Reiten, $\tau$-tilting theory, Compos. Math. 150 (2014), no. 3, 415–452.
  • T. Aihara and O. Iyama, Silting mutation in triangulated categories, J. Lond. Math. Soc. (2) 85 (2012), no. 3, 633–668.
  • L. Angeleri Hügel, F. Marks and J. Vitória, Silting modules, Int. Math. Res. Not. 2016 (2016), no. 4, 1251–1284.
  • I. Assem, D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras, Vol. 1: Techniques of Reperesentation Theory, London Mathematical Society Student Texts 65, Cambridge University Press, Cambridge, 2006.
  • M. Auslander and M. Bridger, Stable Module Theory, Memoirs of the American Mathematical Society 94, American Mathematical Society, Providence, R.I., 1969, 146 pp.
  • M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics 36, Cambridge University Press, Cambridge, 1997.
  • A. B. Buan, R. Marsh, M. Reineke, I. Reiten and G. Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), no. 2, 572–618.
  • L. Demonet, O. Iyama and G. Jasso, $\tau$-tilting finite algebras, $g$-vectors and brick–$\tau$-rigid correspondence. arXiv:1503.00285
  • R. Fossum, P. A. Griffith and I. Reiten, Trivial Extensions of Abelian Categories, Lecture Notes in Mathematics 456, Springer-Verlag, Berlin-New York, 1975.
  • Z. Huang and X. Zhang, Higher Auslander algebras admitting trivial maximal orthogonal subcategories, J. Algebra 330 (2011), 375–387.
  • K. Igusa, Notes on the no loops conjecture, J. Pure Appl. Algebra 69 (1990), no. 2, 161–176.
  • O. Iyama, Symmetry and duality on $n$-Gorenstein ring, J. Algbra 269 (2003), no. 2, 528–535.
  • O. Iyama, P. Jørgensen and D. Yang, Intermediate co-$t$-structures, two-term silting objects, $\tau$-tilting modules, and torsion classes, Algebra Number Theory 8 (2014), no. 10, 2413–2431.
  • O. Iyama, N. Reading, I. Reiten and H. Thomas, Algebraic lattice quotients of Weyl groups coming from preprojective algebras, in preparation.
  • O. Iyama and Y. Yoshino, Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math. 172 (2008), no. 1, 117–168.
  • O. Iyama and X. Zhang, Classifying $\tau$-tilting modules over the Auslander algebra of $K[x]/(x^n)$. arXiv:1602.05037
  • G. Jasso, Reduction of $\tau$-tilting modules and torsion pairs, Int. Math. Res. Not. IMRN 2015 (2015), no. 16, 7190–7237.
  • B. Keller and I. Reiten, Cluster-tilted algebras are Gorenstein and stably Calabi-Yau, Adv. Math. 211 (2007), no. 1, 123–151.
  • Y. Mizuno, Classifying $\tau$-tilting modules over preprojective algebras of Dynkin type, Math. Z. 277 (2014), no. 3-4, 665–690.
  • Y. Tsujioka, Tilting modules over the Auslander algebra of $K[x]/(x^n)$, Master Thesis in Graduate School of Mathematics in Nagoya University, 2008.
  • J. Wei, $\tau$-tilting modules and $*$-modules, J. Algebra 414 (2014), 1–5.
  • X. Zhang, $\tau$-rigid modules for algebras with radical square zero. arXiv:1211.5622
  • Y. Zhang and Z. Huang, $G$-stable support $\tau$-tilting modules, Front. Math. China 11 (2016), no. 4, 1057–1077.