Taiwanese Journal of Mathematics

(p, q)-PROPERTIES OF A GENERALIZED RIESZ POTENTIALS GENERATED BY THE GENERALIZED SHIFT OPERATORS

H¨useyin Yildirim and Mehmet Zeki Sarikaya

Full-text: Open access

Abstract

In this paper, the inequality of Hardy-Littlewood-Sobolev type is established for the generalized Riesz potentials generated by the generalized shift operator with the functions in Sobolev spaces $W_{p,v}^{m}(\mathbf{R}_{n}^{+}).$

Article information

Source
Taiwanese J. Math., Volume 12, Number 5 (2008), 1201-1209.

Dates
First available in Project Euclid: 20 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500574258

Digital Object Identifier
doi:10.11650/twjm/1500574258

Mathematical Reviews number (MathSciNet)
MR2431890

Zentralblatt MATH identifier
1161.31301

Subjects
Primary: 31B10: Integral representations, integral operators, integral equations methods 44A15: Special transforms (Legendre, Hilbert, etc.) 47B37: Operators on special spaces (weighted shifts, operators on sequence spaces, etc.)

Keywords
Riesz potential Sobolev space shift operator

Citation

Yildirim, H¨useyin; Sarikaya, Mehmet Zeki. (p, q)-PROPERTIES OF A GENERALIZED RIESZ POTENTIALS GENERATED BY THE GENERALIZED SHIFT OPERATORS. Taiwanese J. Math. 12 (2008), no. 5, 1201--1209. doi:10.11650/twjm/1500574258. https://projecteuclid.org/euclid.twjm/1500574258


Export citation

References

  • [1.] E. Berchio and F. Gazzola, Best constants and minimizers for embeddingsof second order Sobolev spaces, J. Math. Anal. Appl., 320 (2006),718-735.
  • [2.] O. V. Besov and P. I. Lizorkin, The $L^{p}$-estimates of a certain class of non-isotropic singular integrals, Dokl. Akad. Nauk, SSSR, 69 (1960), 1250-1253.
  • [3.] I. Çriptsize Inar, The Hardy-Littewood Sobolev inequality for non-isotropic Riesz potentials, Turkish J. Math., 21(2) (1997) 153-157.
  • [4.] I. Çriptsize Inar, The $(p,q,l)$-properties of a generalized Riesz potential, App. Math. and Comp., Volume 153, Issue 3, 14 June 2004, pp. 751-755.
  • [5.] I. Çriptsize Inar, The Hardy-Littewood Sobolev inequality, $(\beta , \gamma )$-distance Riesz potentials, App. Math. Comp., 153 (2004), 757-762.
  • [6.] E. B. Fabes and N. M. Riviere, Symbelic calculus of Kernels with Mixed homogeneity, Proceeding of Symposia in Pure Math. 1967, pp. 107-127.
  • [7.] B. M. Levitan, Generalized Translation Operators and Some of Their Application, Moscova: 1962, (Translation 1964).
  • [8.] H-M. Nguyen, Some new characterizations of Sobolev spaces, Jour. of Func. Anal., 237 (2006), 689-720.
  • [9.] F. J. Perez, A note extreme cases of Sobolev embeddings, J. Math. Anal. Appl., 320 (2006), 973-982.
  • [10.] E. M. Stein, Singular Integrals Differential Properties of Functions, Princeton Uni. Press, Princeton, New Jersey, 1970.
  • [11.] H. Yriptsize Ildriptsize Irriptsize Im, Riesz Potentials Generated by a Generalized shift operator, Ankara Uni. Graduate school of Natural and Applieds Sciences Department of Math. PhD. thesis, 1995.