Taiwanese Journal of Mathematics

A NEW SYSTEM OF GENERALIZED CO-COMPLEMENTARITY PROBLEMS IN BANACH SPACES

Fu-Quan Xia and Nan-Jing Huang

Full-text: Open access

Abstract

In this paper, we introduce a new system of generalized cocomplementarity problems in Banach space. An iterative algorithm for finding approximate solutions of these problems is considered. Some convergence results for this iterative algorithm are derived and several existence results are also obtained.

Article information

Source
Taiwanese J. Math., Volume 12, Number 2 (2008), 435-446.

Dates
First available in Project Euclid: 20 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500574165

Digital Object Identifier
doi:10.11650/twjm/1500574165

Mathematical Reviews number (MathSciNet)
MR2402126

Zentralblatt MATH identifier
1211.90252

Subjects
Primary: 90C33: Complementarity and equilibrium problems and variational inequalities (finite dimensions) 49J40: Variational methods including variational inequalities [See also 47J20] 47H10: Fixed-point theorems [See also 37C25, 54H25, 55M20, 58C30]

Keywords
a system of co-complementarity problems iterative algorithm sunny nonexpansive retraction mapping set-valued mapping strongly accretive mapping

Citation

Xia, Fu-Quan; Huang, Nan-Jing. A NEW SYSTEM OF GENERALIZED CO-COMPLEMENTARITY PROBLEMS IN BANACH SPACES. Taiwanese J. Math. 12 (2008), no. 2, 435--446. doi:10.11650/twjm/1500574165. https://projecteuclid.org/euclid.twjm/1500574165


Export citation

References

  • Y. Alber, Metric and Generalized Projection Operators in Banach space: Properties and Applications, in Theory and Applications of Nonlinear Operators of Monotone and Accretive Type, (ed. by A. Kartsatos), Marcel Dekker, New York, 1996.
  • S. S. Chang and N. J. Huang, Generalized strongly nonlinear quasi-complementarity problem in Hilbert space, J. Math. Anal. Appl., 158 (1991), 194-202.
  • J. Y. Chen, N. C. Wong and J. C. Yao, Algorithm for generalized co-complementarity problems in Banach space, Computers Math. Appl., 43 (2002), 49-54.
  • K. Goebel and S. Reich, Uniformly Convexity, Hyperbolic Geometry and Nonexpansive Mapping, Marcel Dekker, New York, 1984.
  • G.J. Habetler and A.L. Price, Existence theory for generalized nonlinear complementarity problems, J. Optim. Theory Appl., 7 (1971), 223-239.
  • G. Isac, Complementarity Problem, Springer-Verlag, Berlin, 1992.
  • G. Isac, Topological Methods for Complementarity Theory, Kluwer Academic Publishers, Dordrecht/Boston/London, 2000.
  • C.R. Jou and J.C. Yao, Algorithm for generalized multivalued variational inequalities in Hilbert space, Computers Math. Applic., 25 (1993), 7-13.
  • S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl., 75 (1980), 287-292.
  • S. Karamardian, Generalized complementarity problems, J. Optim. Theory Appl., 8 (1971), 161-168.
  • S.B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475-488.