Taiwanese Journal of Mathematics

JORDAN $\epsilon$-HOMOMORPHISMS AND JORDAN $\epsilon$-DERIVATIONS

Maja Fošner

Full-text: Open access

Abstract

Herstein’s theorems on Jordan homomorphisms and Jordan derivations on prime associative algebras are extended to graded prime associative algebras.

Article information

Source
Taiwanese J. Math., Volume 9, Number 4 (2005), 595-616.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500407885

Digital Object Identifier
doi:10.11650/twjm/1500407885

Mathematical Reviews number (MathSciNet)
MR2185404

Zentralblatt MATH identifier
1098.16015

Subjects
Primary: 16W50: Graded rings and modules 16W10: Rings with involution; Lie, Jordan and other nonassociative structures [See also 17B60, 17C50, 46Kxx] 16W20: Automorphisms and endomorphisms 16W25: Derivations, actions of Lie algebras 17C50: Jordan structures associated with other structures [See also 16W10]

Keywords
prime associative algebra graded prime associative algebra Jordan homomorphism Jordan derivation $\epsilon$-homomorphism $\epsilon$-derivation Jordan $\epsilon$-homomorphism Jordan $\epsilon$-derivation

Citation

Fošner, Maja. JORDAN $\epsilon$-HOMOMORPHISMS AND JORDAN $\epsilon$-DERIVATIONS. Taiwanese J. Math. 9 (2005), no. 4, 595--616. doi:10.11650/twjm/1500407885. https://projecteuclid.org/euclid.twjm/1500407885


Export citation

References

  • K. I. Beidar, M. Bre$\vss$ar and M. A. Chebotar, Jordan superhomomorphisms, Comm. Algebra, 31 (2003), 633-644.
  • J. Bergen and P. Grzeszczuk, Simple Jordan color algebras arising from associative graded algebras, J. Algebra, 246 (2001), 915-950.
  • M. Fo$\vss$ner, Jordan superderivations, Comm. Algebra, 31 (2003), 4533-4545.
  • C. Gómez-Ambrosi, J. Laliena and I. P. Shestakov, On the Lie structure of the skew elements of a prime superalgebra with superinvolution, Comm. Algebra, 28 (2000), 3277-3291.
  • C. Gómez-Ambrosi and F. Montaner, On Herstein's constructions relating Jordan and associative superalgebras, Comm. Algebra, 28 (2000), 3743-3762.
  • C. Gómez-Ambrosi and I. P. Shestakov, On the Lie structure of the skew elements of a simple superalgebra with superinvolution, J. Algebra, 208 (1998), 43-71.
  • I. N. Herstein, Jordan homomorphisms, Trans. Amer. Math. Soc., 81 (1956), 331-341.
  • I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc., 18 (1957), 1104-1110.
  • I. N. Herstein, Lie and Jordan structures in simple, associative rings, Bull. Amer. Math. Soc., 67 (1961), 517-531.
  • I. N. Herstein, Topics in Ring Theory, Univ. of Chicago Press, Chicago, 1969.
  • F. Montaner, On the Lie structure of associative superalgebras, Comm. Algebra, 26 (1998), 2337-2349.
  • S. Montgomery, Constructing simple Lie superalgebras from associative graded algebras, J. Algebra, 195 (1997), 558-579.
  • M. F. Smiley, Jordan homomorphisms onto prime rings, Trans. Amer. Math. Soc., 84 (1957), 426-429.
  • K. Zhao, Simple Lie color algebras from graded associative algebras, J. Algebra, 269 (2003), 439-455.