Taiwanese Journal of Mathematics

ON A HARDY-CARLEMAN’S TYPE INEQUALITY

Bicheng Yang

Full-text: Open access

Abstract

In this paper, we prove that the constant factor in the Hardy-Carleman’s type inequality is the best possible. A related integral inequality with a best constant factor is considered.

Article information

Source
Taiwanese J. Math., Volume 9, Number 3 (2005), 469-475.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500407854

Digital Object Identifier
doi:10.11650/twjm/1500407854

Mathematical Reviews number (MathSciNet)
MR2162891

Zentralblatt MATH identifier
1084.26018

Subjects
Primary: 26D15: Inequalities for sums, series and integrals

Keywords
Hardy-Carleman's type inequality generalized harmonic average $Hölder's$ inequality

Citation

Yang, Bicheng. ON A HARDY-CARLEMAN’S TYPE INEQUALITY. Taiwanese J. Math. 9 (2005), no. 3, 469--475. doi:10.11650/twjm/1500407854. https://projecteuclid.org/euclid.twjm/1500407854


Export citation

References

  • [1.] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities. Cambridge Univ. Press, London,1952.
  • [2.] M. Johansson, Lars-Erik Persson and A. Wedestic, Carleman's inequality-history, proofs and some new generalizations, J Ineq. Pure and Appl. Math., 4, \bf (3) (2003), Article 52.
  • [3.] Bicheng Yang and L. Debnath, Some inequalities involving the constant e and application to Carleman's inequality, J. Math. Anal. Appl. 223 (1998), 347-353.
  • [4.] Bicheng Yang and Dachao Li, A strengthened Carleman's inequality, J. Math. for Technology, 14, 1 (1998), 130-133.
  • [5.] X. Yang, Approximations for constant e and their applications, J. Math. Anal. Appl., 252 (2000), 994-998.
  • [6.] Thanh Long Nguyen and Vu Duy Linh Nguyen, The Carleman's inequality for a negative power number, J. Math. Anal. Appl., 259 (2001), 219-225.
  • [7.] Thanh Long Nguyen, Vu Duy Linh Nguyen and Thi Thu Van Nguyen, Note on the Carleman's inequality for a negative power number, J. Ineq. Pure and Appl. Math., 4, 1 (2003), Article 2.
  • [8.] J. Kuang, Applied inequalities, Hunan Education Press, Changsha, 1992.