Taiwanese Journal of Mathematics

RANK-ONE OPERATORS IN REFLEXIVE A-SUBMODULES OF OPERATOR ALGEBRAS

Dong Zhe

Full-text: Open access

Abstract

In this paper, we first show that any reflexive $\mathcal{A}$-submodule $\mathcal{U}$ of a unital operator algebra $\mathcal{A}$ in $\mathcal{B(H)}$ is precisely of the following form: $$\mathcal{U} = \{ T \in \mathcal{B(H)}: TE \subseteq \phi(E) \quad \forall E \in \mathrm{Lat}\mathcal{A} \},$$ where $\phi$ is an order homomorphism of $\mathrm{Lat}\mathcal{A}$ into itself. Furthermore we investigate the density of the rank-one submodule of a reflexive $\mathcal{A}$-submodule in the $w^{*}$-topology and in certain pointwise approximation, and obtain several equivalent conditions by means of the order homomorphism $\phi$.

Article information

Source
Taiwanese J. Math., Volume 9, Number 3 (2005), 373-384.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500407846

Digital Object Identifier
doi:10.11650/twjm/1500407846

Mathematical Reviews number (MathSciNet)
MR2162883

Zentralblatt MATH identifier
1103.47056

Subjects
Primary: 47L75: Other nonselfadjoint operator algebras

Keywords
reflexive $\mathcal{A}$-submodule $w^{*}$-density

Citation

Zhe, Dong. RANK-ONE OPERATORS IN REFLEXIVE A-SUBMODULES OF OPERATOR ALGEBRAS. Taiwanese J. Math. 9 (2005), no. 3, 373--384. doi:10.11650/twjm/1500407846. https://projecteuclid.org/euclid.twjm/1500407846


Export citation

References

  • [1.] S. Argyros, M. Lambrou and W. E. Longstaff, Atomic Boolean subspace lattices and applications to the theory od bases, Mem. Amer. Math. Soc. 445 (1991).
  • [2.] J. A. Erdos, Operators of finite rank in nest algebras, J. London Math. Soc. 43 (1968), 391-397.
  • [3.] J. A. Erdos and S. C. Power, Weakly closed ideals of nest algebras, J. Operator Theory 7 (1982), 219-235.
  • [4.] J. A. Erdos, Reflexivity for subspace maps and linear spaces of operators, Proc. London Math. Soc. 52(3) (1986), 582-600.
  • [5.] Han Deguang, On $\a$-submodules for reflexive operator algebras, Proc. Amer. Math. Soc. 104 (1988), 1067-1070.
  • [6.] Han Deguang, On $\a$-submodules for reflexive operator algebras II, Acta Math. Sinica 33 (1990), 348-352 [in Chinese].
  • [7.] G. J. Knowles, On the structure of certain nest algebra modules, Canad. J. Math. 39 (1987), 1405-1412.
  • [8.] J. Kraus and D. Larson, Reflexivity and distance formulae, Proc. London Math. Soc. 53(3) (1986), 340-356.
  • [9.] M. S. Lambrou, Approximants, commutants and double commutants in normed algebras, J. London Math. Soc. 25(2) (1982), 499-512.
  • [10.] M. S. Lambrou, Completely distributive lattices, Fund. Math. 119 (1983), 227-240.
  • [11.] C. Laurie and W. E. Longstaff, A note on rank-one operators in reflexive algebras, Proc. Amer. Math. Soc. 89 (1983), 293-297.
  • [12.] W. E. Longstaff, Strongly reflexive lattices, J. London Math. Soc. 11(2) (1975), 491-498.
  • [13.] W. E. Longstaff, Operators of rank one in reflexive algebras, Canad. J. Math. 28 (1976), 19-23.