Taiwanese Journal of Mathematics


Shin-Hwa Wang and Yueh-Tseng Liu

Full-text: Open access


We study the shape and the structure of the bifurcation curve $f_{a}(\rho)$ ($= \sqrt{\lambda}$) with $\rho: = \min_{x \in (0,1)} u(x)$ of (sign-changing and nonnegative) solutions of the boundary blow-up problem \[ \left\{ \begin{array}{l} -u''(x) = \lambda f(u(x)),\; 0 \lt x \lt 1, \\ \lim\limits_{x \to 0^+} u(x) = \infty = \lim\limits_{x \to x^-} u(x), \end{array} \right. \] where $\lambda$ is a positive bifurcation parameter and the Lipschitz continuous concave function \[ f = f_{a}(u) = \begin{cases} -|u|^p & \textrm{if } u \leq -a^{1/p}, \\ -a & \textrm{if } -a^{1/p} \lt u \lt a^{1/p}, \\ -|u|^p & \textrm{if } u \geq a^{1/p}, \end{cases} \] with constants $p \gt 1$ and $a \gt 0$. We mainly show that the bifurcation curve $G_{f_a}(\rho)$ satisfies $\lim_{\rho \rightarrow \pm \infty} G_{f_a}(\rho) = 0$ and $G_{f_a}(\rho)$ has a exactly one critical point, a maximum, on $(-\infty,\infty )$. Thus we are able to determine the exact number of (sign-changing and nonnegative) solutions of the problem for each $\lambda \gt 0$.

Article information

Taiwanese J. Math., Volume 9, Number 2 (2005), 201-214.

First available in Project Euclid: 18 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 34B15: Nonlinear boundary value problems 34C23: Bifurcation [See also 37Gxx]

bifurcation curve boundary blow-up problem nonnegative solution sign-changing solution exact multiplicity


Wang, Shin-Hwa; Liu, Yueh-Tseng. SHAPE AND STRUCTURE OF THE BIFURCATION CURVE OF A BOUNDARY BLOW-UP PROBLEM. Taiwanese J. Math. 9 (2005), no. 2, 201--214. doi:10.11650/twjm/1500407796. https://projecteuclid.org/euclid.twjm/1500407796

Export citation


  • A. Aftalion and W. Reichel, Existence of two boundary blow-up solutions for semilinear elliptic equations, J. Differential Equations 141 (1997), 400-421.
  • V. Anuradha, C. Brown, and R. Shivaji, Explosive nonnegative solutions to two point boundary value problems, Nonlinear Analysis 26 (1996), 613-630.
  • L. Bieberbach, $\Delta u=e^{u}$ und die automorphen Funktionen, Math. Annln 77 (1916), 173-212.
  • J. B. Keller, On solutions of $\Delta u=f(u)$, Comm. Pure Appl. Math. 10 (1957), 503- 510.
  • C. Loewner and L. Nirenberg, Partial differential equations invariant under conformal or projective transformations, in : Contributions to Analysis (A Collection of Paper Dedicated to Lipman Bers), pp. 245-272, Academic Press, New York, 1974.
  • J. Mawhin, D. Papini, F. Zanolin, Boundary blow-up for differential equations with indefinite weight. J. Differential Equations 188 (2003), 33–51.
  • M. Marcus and L. Véron, Uniqueness of solutions with blowup at the boundary for a class of nonlinear elliptic equations, C. R. Acad. Sci. Paris 317 (1993), 559-563.
  • P. J. McKenna, W. Reichel, and W. Walter, Symmetry and multiplicity for nonlinear elliptic differential equations with boundary blow-up, Nonlinear Analysis 28 (1997), 1213-1225.
  • S. L. Pohozaev, The Dirichlet problem for the equation $\Delta u=u^{2},$ Dokl. Akad. SSSR 134 (1960), 769-772; English translation, Soviet Math. 1 (1960), 1143-1146.
  • H. Rademacher, Einige besondere probleme partieller Differentialgleichungen, in: Die Differential-und Integralgleichungen, der Mechanik und Physik I, 2nd edition, pp. 838-845, Rosenberg, New York, 1943.
  • E. D. Rainville, Special Functions, Macmillan, New York, 1960.
  • J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions, J. Differential Equations 39 (1981), 269-290.
  • S.-H. Wang, Existence and multiplicity of boundary blow-up nonnegative solutions to two point boundary value problems, Nonlinear Analysis 42 (2000), 139-162.
  • S.-H. Wang, Y.-T. Liu and I-A. Cho, An explicit formula of the bifurcation curve for a boundary blow-up problem, Dynamics of Continuous, Discrete and Impulsive Systems Ser. A Math. Anal. 10 (2003), 431-446.