Taiwanese Journal of Mathematics

ZEROS OF FINITE WAVELET SUMS

Noli N. Reyes

Full-text: Open access

Abstract

For certain analytic functions $\psi$, a lower Riesz bound for a finite wavelet system generated by $\psi$, yields an upper bound for the number of zeros on a bounded interval of the corresponding wavelet sums. In particular, we show that if the Fourier transform of $\psi$ is compactly supported, say on $[-\Omega,\Omega]$, and if $B \gt 2e \Omega$, then any finite sum $\sum_{|k| \leq \alpha/2} a_{k} \psi(x-k)$ cannot have more than $B \alpha$ zeros in $[-\alpha,\alpha]$ for $\alpha \gt 0$ sufficiently large.

Article information

Source
Taiwanese J. Math., Volume 9, Number 1 (2005), 67-72.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500407745

Digital Object Identifier
doi:10.11650/twjm/1500407745

Mathematical Reviews number (MathSciNet)
MR2122903

Zentralblatt MATH identifier
1077.42031

Subjects
Primary: 41A 42A

Keywords
Fourier transform wavelet Riesz basis lower Riesz bound zeros

Citation

Reyes, Noli N. ZEROS OF FINITE WAVELET SUMS. Taiwanese J. Math. 9 (2005), no. 1, 67--72. doi:10.11650/twjm/1500407745. https://projecteuclid.org/euclid.twjm/1500407745


Export citation

References

  • [1.] P. Casazza, and O. Christensen, Hilbert space frames containing a Riesz basis and Banach spaces which have no subspace isomorphic to $ c_{0} $, J. Math. Anal. Appl. 202 (1996), 940-950.
  • [2.] O. Christensen, Frames, Riesz Bases, and Discrete Gabor/Wavelet expansions, Bull. Amer. math. Soc. 38 (2001), 273-291.
  • [3.] O. Christensen and A. Lindner, Lower bounds for finite wavelet and Gabor systems, preprint (2001).
  • [4.] C. Heil, J. Ramanathan, and P. Topiwala, Linear independence of time-frequency translates, Proc. Amer. Math. Soc. 124 (1996), 2787-2795.