Taiwanese Journal of Mathematics

ON SIMILARITY DEGREES OF FINITE VON NEUMANN ALGEBRAS

Jinsong Wu, Wenming Wu, and Liguang Wang

Full-text: Open access

Abstract

In this paper, we showed some results of similarity degrees of von Neumann algebras satisfying co-amenability. We also obtain some results of Christensen's property $D_k$ for such von Neumann algebras.

Article information

Source
Taiwanese J. Math., Volume 16, Number 6 (2012), 2275-2287.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500406851

Digital Object Identifier
doi:10.11650/twjm/1500406851

Mathematical Reviews number (MathSciNet)
MR3001847

Zentralblatt MATH identifier
1261.46057

Subjects
Primary: 46L10: General theory of von Neumann algebras

Keywords
co-amenability similarity degree von Neumann algebra

Citation

Wu, Jinsong; Wu, Wenming; Wang, Liguang. ON SIMILARITY DEGREES OF FINITE VON NEUMANN ALGEBRAS. Taiwanese J. Math. 16 (2012), no. 6, 2275--2287. doi:10.11650/twjm/1500406851. https://projecteuclid.org/euclid.twjm/1500406851


Export citation

References

  • E. Christensen, Similarities of II$_1$ factors with property $\Gamma$, J. Oper. Theory, 15 (1986), 281-288.
  • E. Christensen, Extensions of derivations II, Math. Scand, 50 (1982), 111-122.
  • E. Christensen, Perturbations of operator algebras, II, Indiana Univ. Math. J., 26 (1977), 891-904.
  • E. Christensen, Finite von Neumann algebra factors with property $\Gamma$, ArXiv:/0010139v2, 2000.
  • E. Christensen, On non self-adjoint representations of C$^*$ algebras, Amer. J. Math., 103 (1981), 817-833.
  • E. Christensen, A. Sinclair, R. Smith and S. White, Perturbations of C$^*$ Algebraic Invariants, ArXiv:/0910.1368v1, 2009.
  • U. Haagerup, Solution of the similarity problem for cyclic representations of C$^*$ algebras, Ann. Math., 118 (1983), 215-240.
  • V. Jones, Index for subfactors, Invent. Math., 72 (1983), 1-25.
  • R. Kadison, On the orthogonalization of operator representations, Amer. J. Math., 77 (1955), 600-620.
  • G. Pisier, The similarity degree of an operator algebra, St. Petersburg Math. J., 10 (1999), 103-146.
  • G. Pisier, The similarity degree of an operator algebra II, Math. Zeit., 234(1) (2000), 53-81,
  • G. Pisier, Remarks on the similarity degree of an operator algebra, Preprint.
  • G. Pisier, A similarity degree characterization of nuclear C$^*$ algebras, ArXivmath/0409091v3, 2005.
  • N. Monod and S. Popa, On co-amenable for groups and von Neumann algebras, Arxiv math/0301348, 2003.
  • N. Ozawa, An invitation to the similarity problems $($After Pisier$)$, RIMS workshop "Operator Space Theory and its application", 2006.
  • F. Pop, The similarity problem for tensor products of certain C$^*$ algebras, Bull. Austral. Math. Soc., 70 (2004), 385-389.
  • S. Popa and M. Pimsner, Entropy and index for subfactors, Ann. scient. Ec. Norm. Sup. 4 serie, tome 19(1) (1986), 57-106.
  • J. Wu, Co-amenability and Connes's Embedding Problem, preprint, 2011.