Taiwanese Journal of Mathematics

DIFFERENCES OF WEIGHTED COMPOSITION OPERATORS FROM $H^\infty$ TO BLOCH SPACE

Takuya Hosokawa and Shûichi Ohno

Full-text: Open access

Abstract

We consider the boundedness and compactness of the differences of two weighted composition operators acting from the Banach space of bounded analytic functions on the open unit disk to the Bloch space. In the sequel, we will present some explicit examples to bring our reseach into forcus.

Article information

Source
Taiwanese J. Math., Volume 16, Number 6 (2012), 2093-2105.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500406842

Digital Object Identifier
doi:10.11650/twjm/1500406842

Mathematical Reviews number (MathSciNet)
MR3001838

Zentralblatt MATH identifier
1283.47038

Subjects
Primary: 47B38: Operators on function spaces (general) 30H05: Bounded analytic functions 30H30: Bloch spaces

Keywords
weighted composition operators the Banach space of bounded analytic functions Bloch space

Citation

Hosokawa, Takuya; Ohno, Shûichi. DIFFERENCES OF WEIGHTED COMPOSITION OPERATORS FROM $H^\infty$ TO BLOCH SPACE. Taiwanese J. Math. 16 (2012), no. 6, 2093--2105. doi:10.11650/twjm/1500406842. https://projecteuclid.org/euclid.twjm/1500406842


Export citation

References

  • R. F. Allen and F. Colonna, Weighted composition operators from $H^\infty$ to the Bloch space of a bounded homogeneous domain, Integral Equations Operator Theory, 66 (2010), 21-40.
  • C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995.
  • T. Hosokawa, Differences of weighted composition operators on the Bloch spaces, Complex Anal. Oper. Theory, 3 (2009), 847-866.
  • T. Hosokawa, K. Izuchi and S. Ohno, Topological structure of the space of weighted composition operators on $H^\infty$, Integral Equations Operator Theory, 53 (2005), 509-526.
  • T. Hosokawa and S. Ohno, Topological structures of the sets of composition operators on the Bloch spaces, J. Math. Anal. Appl., 314 (2006), 736-748.
  • T. Hosokawa and S. Ohno, Differences of composition operators on the Bloch spaces, J. Operator Theory, 57 (2007), 229-242.
  • T. Hosokawa and S. Ohno, Differences of weighted composition operators acting from Bloch space to $H^\infty$, Trans. Amer. Math. Soc., 363 (2011), 5321-5340.
  • M. Lindström and E. Wolf, Essential norm of the difference of weighted composition operators, Monatsh. Math., 153 (2008), 133-143.
  • B. MacCluer, S. Ohno and R. Zhao, Topological structure of the space of composition operators on $H^\infty$, Integral Equations Operator Theory, 40 (2001), 481-494.
  • K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc., 347 (1995), 2679-2687.
  • J. Moorhouse, Compact differences of composition operators, J. Funct. Anal., 219 (2005), 70-92.
  • P. J. Nieminen, Compact differences of composition operators on Bloch and Lipschitz spaces, Comput. Methods Funct. Theory, 7 (2007), 325-344.
  • S. Ohno, Weighted composition operators between $H^\infty$ and the Bloch space, Taiwanese J. Math., 5 (2001), 555-563.
  • J. H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, New York, 1993.
  • J. H. Shapiro and C. Sundberg, Isolation amongst the composition operators, Pacific J. Math., 145 (1990), 117-152.
  • K. Zhu, Operator Theory on Function Spaces, Marcel Dekker, New York, 1990; 2nd Edition, Amer. Math. Soc., Providence, 2007.