Taiwanese Journal of Mathematics

JORDAN HIGHER ALL-DERIVABLE POINTS IN NEST ALGEBRAS

Nannan Zhen and Jun Zhu

Full-text: Open access

Abstract

Let $\mathcal{N}$ be a non-trivial and complete nest on a Hilbert space $H$. Suppose $d = \{d_n: n \in N\}$ is a group of linear mappings from $Alg\mathcal{N}$ into itself. We say that $d = \{d_n: n \in N\}$ is a Jordan higher derivable mapping at a given point $G$ if $d_{n}(ST+TS) = \sum\limits_{i+j=n} \{d_{i}(S) d_{j}(T) + d_{j}(T) d_{i}(S)\}$ for any $S,T \in Alg \mathcal{N}$ with $ST = G$. An element $G \in Alg \mathcal{N}$ is called a Jordan higher all-derivable point if every Jordan higher derivable mapping at $G$ is a higher derivation. In this paper, we mainly prove that any given point $G$ of $Alg\mathcal{N}$ is a Jordan higher all-derivable point. This extends some results in [1] to the case of higher derivations.

Article information

Source
Taiwanese J. Math., Volume 16, Number 6 (2012), 1959-1970.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500406833

Digital Object Identifier
doi:10.11650/twjm/1500406833

Mathematical Reviews number (MathSciNet)
MR3001829

Zentralblatt MATH identifier
1272.47090

Subjects
Primary: 47L35: Nest algebras, CSL algebras 47B47: Commutators, derivations, elementary operators, etc.

Keywords
nest algebras Jordan higher all-derivable point higher derivation

Citation

Zhen, Nannan; Zhu, Jun. JORDAN HIGHER ALL-DERIVABLE POINTS IN NEST ALGEBRAS. Taiwanese J. Math. 16 (2012), no. 6, 1959--1970. doi:10.11650/twjm/1500406833. https://projecteuclid.org/euclid.twjm/1500406833


Export citation

References

  • Y. H. Chen, The depicting of mappings in operator algebra, the doctoral dissertation of ECUST, 2011.
  • S. Zhao and J. Zhu, Jordan all-derivable points in the algebra of all upper triangular matrices, J. Linear Algebra Appl., 433(11-12) (2010), 1922-1938.
  • J. Zhu, C. P. Xiong and L. Zhang, All-derivable points in matrix algebras, J. Linear Algebra Appl., 430(8-9) (2009), 2070-2079.
  • W. Jing, S. J. Lu and P. T. Li, Characterizations of derivations on some operator algebras, Bull. Austral. Math. Soc., 66 (2002), 227-232, MR 1932346 (2003f:47059).
  • J. C. Hou and X. F. Qi, Characterizations of derivations of Banach space nest algebras: all-derivable point, Linear Algebra Appl., 432 (2010), 3183-3200.
  • M. Gong and J. Zhu, Jordan multiplicative mappings at some points on matrix algebras, Journal of Advanced Research in Pure Mathematics, 2(4) (2010), 84-93.
  • Z. K. Xiao and F. Wei, Higher derivations of triangular algebras and its generations, Linear Algebra Appl., 432 (2010), 2615-2622.