Taiwanese Journal of Mathematics


Vincenzo De Filippis

Full-text: Open access


Let $R$ be a prime ring, $Z(R)$ its center, $U$ its right Utumi quotient ring, $C$ its extended centroid, $G$ a non-zero generalized derivation of $R$, $f(x_1,\ldots,x_n)$ a non-zero polynomial over $C$ and $I$ a non-zero right ideal of $R$. If $f(x_1,\ldots,x_n)$ is not central valued on $R$ and $[G(f(r_1,\ldots,r_n)), f(r_1,\ldots,r_n)] \in C$, for all $r_1,\ldots,r_n \in I$, then either there exist $a \in U$, $\alpha \in C$ such that $G(x) = ax$ for all $x \in R$, with $(a-\alpha)I = 0$ or there exists an idempotent element $e \in soc(RC)$ such that $IC = eRC$ and one of the following holds:

1. $f(x_1,\ldots,x_n)$ is central valued in $eRCe$;

2. $char(R) = 2$ and $eRCe$ satisfies the standard identity $s_4$;

3. $char(R) = 2$ and $f(x_1,\dots,x_n)^2$ is central valued in $eRCe$;

4. $f(x_1,\ldots,x_n)^2$ is central valued in $eRCe$ and there exist $a, b \in U$, $\alpha \in C$ such that $G(x) = ax+xb$, for all $x \in R$, with $(a-b+\alpha)I = 0$.

Article information

Taiwanese J. Math., Volume 16, Number 5 (2012), 1847-1863.

First available in Project Euclid: 18 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 16N60: Prime and semiprime rings [See also 16D60, 16U10] 16W25: Derivations, actions of Lie algebras

prime rings differential identities generalized derivations


Filippis, Vincenzo De. CENTRALIZING GENERALIZED DERIVATIONS ON POLYNOMIALS IN PRIME RINGS. Taiwanese J. Math. 16 (2012), no. 5, 1847--1863. doi:10.11650/twjm/1500406801. https://projecteuclid.org/euclid.twjm/1500406801

Export citation


  • C. L. Chuang, GPIs' having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103(3) (1988), 723-728.
  • C. L. Chuang, On invariant additive subgroups, Israel J. Math., 57 (1987), 116-128.
  • C. L. Chuang and T. K. Lee, Rings with annihilator conditions on multilinear polynomials, Chinese J. Math., 24(2) (1996), 177-185.
  • V. De Filippis, An Engel condition with generalized derivations on multilinear polynomials, Israel J. Math., \bf (162) (2007), 93-108.
  • I. N. Herstein, A condition that a derivation be inner, Rend. Circ. Mat. Palermo, 37(1) (1988), 5-7.
  • B. Hvala, Generalized derivations in rings, Comm. Algebra, 26(4) (1998), 1147-1166.
  • V. K. Kharchenko, Differential identities of prime rings, Algebra and Logic, 17 (1978), 155-168.
  • T. K. Lee, Semiprime rings with hypercentral derivations, Canad. Math. Bull., 38(4) (1995), 445-449.
  • T. K. Lee, Derivations with Engel conditions on polynomials, Algebra Coll., 5(1) (1998), 13-24.
  • T. K. Lee, Generalized derivations of left faithful rings, Comm. Algebra, 27(8) (1999), 4057-4073.
  • T. K. Lee, Power reduction property for generalized identities of one-sided ideals, Algebra Coll., 3 (1996), 19-24.
  • T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica, 20(1) (1992), 27-38.
  • T. K. Lee and W. K. Shiue, Derivations cocentralizing polynomials, Taiwanese J. Math., 2(4) (1998), 457-467.
  • T. K. Lee and W. K. Shiue, Identities with generalized derivations, Comm. Algebra, 29(10) (2001), 4437-4450.
  • U. Leron, Nil and power central polynomials in rings, Trans. Amer. Math. Soc., 202 (1975), 97-103.
  • W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 576-584.
  • E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093-1100.
  • L. Rowen, Polynomial identities in ring theory, Pure and Applied Math., 1980.
  • K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov and A. I. Shirshov, Rings that are nearly associative, Academic Press, New York, 1982.