Taiwanese Journal of Mathematics


Choonkil Park, Shahram Ghaffary Ghaleh, and Khatereh Ghasemi

Full-text: Open access


In this paper, we investigate $n$-Jordan $*$-homomorphisms in $C^{*}$-algebras associated with the following functional inequality $$\left\|f\left(\frac{b-a}{3} \right) + f\left( \frac{a-3c}{3} \right) + f\left( \frac{3a+3c-b}{3} \right)\right\|\leq \|f(a)\|.$$ We moreover prove the superstability and the Hyers-Ulam stability of $n$-Jordan $*$-homomorphisms in $C^{*}$-algebras associated with the following functional equation $$f\left( \frac{b-a}{3} \right) + f\left( \frac{a-3c}{3} \right) + f\left(\frac{3a+3c-b}{3} \right) = f(a).$$

Article information

Taiwanese J. Math., Volume 16, Number 5 (2012), 1803-1814.

First available in Project Euclid: 18 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 17C65: Jordan structures on Banach spaces and algebras [See also 46H70, 46L70] 39B52: Equations for functions with more general domains and/or ranges 39B72: Systems of functional equations and inequalities 46L05: General theory of $C^*$-algebras

$n$-Jordan $*$-homomorphism $C^{*}$-algebra Hyers-Ulam stability


Park, Choonkil; Ghaleh, Shahram Ghaffary; Ghasemi, Khatereh. $N$-JORDAN $*$-HOMOMORPHISMS IN $C^{*}$-ALGEBRAS. Taiwanese J. Math. 16 (2012), no. 5, 1803--1814. doi:10.11650/twjm/1500406798. https://projecteuclid.org/euclid.twjm/1500406798

Export citation


  • T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
  • S. Czerwik, Function Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, USA, 2002.
  • M. Eshaghi Gordji, $n$-Jordan homomorphisms, Bull. Aust. Math. Soc., 80 (2009), 159-164.
  • M. Eshaghi Gordji, On approximate $n$-ring homomorphisms and $n$-ring derivations, Nonlinear Funct. Anal. Appl., (to appear).
  • M. Eshaghi Gordji and Z. Alizadeh, Stability and superstability of ring homomorphisms on nonarchimedean banach algebras, Abstract and Applied Analysis, 2011, Article ID 123656, 2011, 10 pages.
  • M. Eshaghi Gordji, A. Bodaghi and I. A. Alias, On the stability of quadratic double centralizers and quadratic multipliers: a fixed point approach, Journal of Inequalities and Applications, 2011, Article ID 957541, 2011, 12 pages.
  • M. Eshaghi Gordji, M. B. Ghaemi, S. Kaboli Gharetapeh, S. Shams and A. Ebadian, On the stability of $J^{*}$-derivations, Journal of Geometry and Physics, 60 (2010), 454-459.
  • M. Eshaghi Gordji, N. Ghobadipour and C. Park, Jordan $*$-homomorphisms on $C^{*}$-algebras, Operators and Matrices, 5 (2011), 541-551.
  • M. Eshaghi Gordji, S, Kaboli Gharetapeh, H. Ziyaei, T. Karimi, S. Shagholi and M. Aghaei, Approximate $n$-Jordan homomorphisms: an alternative fixed point approach, J. Math. Anal., 2 (2011), 1-7.
  • S. Hejazian, M. Mirzavaziri and M. S. Moslehian, $n$-Homomorphisms, Bull. Iranian Math. Soc., 31 (2005), 13-23.
  • D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222-224.
  • D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Progress in Nonlinear Differential Equations and Their Applications, Boston, MA, USA, 1998.
  • D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math., 44 (1992), 125-153.
  • G. Isac and Th. M. Rassias, On the Hyers-Ulam Stability of $\psi$-additive mapping, J. Approx. Theory, 72 (1993), 131-137.
  • G. Isac and Th. M. Rassias, Stability of $\psi$-additive mapping, J. Math. Sci., 19 (1996), 219-228.
  • S. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Harmonic Press, Palm Harbor, FL, USA, 2001.
  • T. Miura, S.-E. Takahasi and G. Hirasawa, Hyers-Ulam-Rassias stability of Jordan homomorphisms on Banach algebras, Journal of Inequalities and Applications, 2005 (2005), 435-441.
  • C. Park, Homomorphisms between Poisson $JC^{*}$-algebras, Bull. Braz. Math. Soc., 36 (2005), 79-97.
  • C. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras, Bull. Sci. Math., 132 (2008), 87-96.
  • C. Park and J. M. Rassias, Stability of the Jensen-type functional equation in $C^{*}$-algebras: a fixed point approach, Abstract and Applied Analysis, 2009, Article ID 360432, 17 pages, 2009.
  • Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
  • S. M. Ulam, Problems in Modern Mathematics, Chapter VI. Science, ed. Wily, New York, 1940.