Taiwanese Journal of Mathematics

TWO NONTRIVIAL SOLUTIONS FOR A CLASS OF ANISOTROPIC VARIABLE EXPONENT PROBLEMS

Denisa Stancu-Dumitru

Full-text: Open access

Abstract

We study an anisotropic problem involving variable exponent growth conditions on a bounded domain $\Omega \subset \mathbb{R}^N$. We prove the existence of at least two nontrivial weak solutions using as main tool a result due to Ricceri.

Article information

Source
Taiwanese J. Math., Volume 16, Number 4 (2012), 1205-1219.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500406732

Digital Object Identifier
doi:10.11650/twjm/1500406732

Mathematical Reviews number (MathSciNet)
MR2951136

Zentralblatt MATH identifier
1263.35086

Subjects
Primary: 35J60: Nonlinear elliptic equations 35J70: Degenerate elliptic equations 46E30: Spaces of measurable functions (Lp-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)

Keywords
anisotropic variable exponent equation weak solution critical point Ricceri's variational principle

Citation

Stancu-Dumitru, Denisa. TWO NONTRIVIAL SOLUTIONS FOR A CLASS OF ANISOTROPIC VARIABLE EXPONENT PROBLEMS. Taiwanese J. Math. 16 (2012), no. 4, 1205--1219. doi:10.11650/twjm/1500406732. https://projecteuclid.org/euclid.twjm/1500406732


Export citation

References

  • M. Bocea and M. Mihăa ilescu, $\Gamma$-convergence of power-law functionals with variable exponents. Nonlinear Analysis, 73 (2010), 110-121.
  • M. Bocea, M. Mihăa ilescu, M. Pérez-Llanos and J. D. Rossi, Models for growth of heterogeneous sandpiles via Mosco convergence, Asymptotic Analysis, in press (Doi 10.3233/ASY-2011-1083).
  • M. Bocea, M. Mihăa ilescu and C. Popovici, On the asymptotic behavior of variable exponent power-law functionals and applications, Ricerche di Matematica, 59 (2010), 207-238.
  • Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image processing, SIAM J. Appl. Math., 66 (2006), 1383-1406.
  • D. E. Edmunds, J. Lang and A. Nekvinda, On $L^{p(x)}$ norms, Proc. Roy. Soc. London Ser. A, 455 (1999), 219-225.
  • D. E. Edmunds and J. Rákosn\ipref k, Density of smooth functions in $W^{k,p(x)}(\Omega)$, Proc. Roy. Soc. London Ser. A, 437 (1992), 229-236.
  • D. E. Edmunds and J. Rákosn\ipreff k, Sobolev embedding with variable exponent, Studia Math., 143 (2000), 267-293.
  • X. Fan and S. G. Deng, Remarks on Ricceri's variational principle and applications to the $p(x)$-Laplacian equations, Nonlinear Anal., 67 (2007), 3064-3075.
  • X. Fan, J. Shen and D. Zhao, Sobolev Embedding Theorems for Spaces $W^{k,p(x)}(\Omega)$, J. Math. Anal. Appl., 262 (2001), 749-760.
  • X. L. Fan and D. Zhao, On the Spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446.
  • I. Fragalà, F. Gazzola and B. Kawohl, Existence and nonexistence results for anisotropic quasilinear equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004) 751-734.
  • G. Fragnelli, Positive periodic solutions for a system of anisotropic parabolic equations, J. Math. Anal. Appl., 367 (2010), 204-228.
  • P. Harjulehto, P. Häst ö, Ú. V. Lê and M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Anal., 72 (2010), 4551-4574.
  • C. Ji, Remarks on the existence of three solutions for the $p(x)$-Laplacian equations, Nonlinear Anal., 74 (2011), 2908-2915.
  • O. Kováčc ik and J. Rákosn\ipref k, On spaces $L^{p(x)}$ and $W^{1,p(x)}$, Czechoslovak Math. J., 41 (1991), 592-618.
  • Q. Liu, Existence of three solutions for $p(x)$-Laplacian equations, Nonlinear Anal., 68 (2008), 2119-2127.
  • M. Mih\vaa ilescu, Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplace operator, Nonlinear Anal., 67 (2007), 1419-1425.
  • M. Mih\vaa ilescu and G. Moroşanu, Existence and multiplicity of solutions for an anisotropic elliptic problem involving variable exponent growth conditions, Applicable Analysis, 89 (2010), 257-271.
  • M. Mih\vaa ilescu and G. Moroşanu, On an eigenvalue problem for an anisotropic elliptic equation involving variable exponents, Glasgow Mathematical Journal, 52 (2010), 517-527.
  • M. Mih\vaa ilescu, P. Pucci and V. R\vaa dulescu, Nonhomogeneous boundary value problems in anisotropic Sobolev spaces, C. R. Acad. Sci. Paris Ser. I Math., 345 (2007), 561-566.
  • M. Mih\vaa ilescu, P. Pucci and V. R\vaa dulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl., 340 (2008), 687- 698.
  • J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, Vol. 1034, Springer, Berlin, 1983.
  • S. M. Nikol'skii, On imbedding, continuation and approximation theorems for differentiable functions of several variables, Russian Math. Surveys, 16 (1961), 55-104.
  • J. Rákosn\ipreffa k, Some remarks to anisotropic Sobolev spaces I, Beiträge Anal., 13 (1979), 55-68.
  • J. Rákosn\ipref k, Some remarks to anisotropic Sobolev spaces II, Beiträge Anal., 15 (1981), 127-140.
  • B. Ricceri, On three critical points theorem, Arch. Math. $($Basel$)$, 75 (2000), 220-226.
  • B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math., 113 (2000), 401-410.
  • B. Ricceri, A further three critical points theorem, Nonlinear Analysis, 71 (2009), 4151-4157.
  • M. Ružz ičc ka, Electrorheological Fluids: Modeling, and Mathematical Theory, Lecture Notes Math., Vol. 1748, Springer, Berlin, 2002.
  • D. Stancu-Dumitru, Multiplicity of solutions for anisotropic quasilinear elliptic equations with variable exponents, Bull. Belg. Math. Soc. Simon Stevin, 17 (2010), 875-889.
  • D. Stancu-Dumitru, Multiplicity of solutions for a nonlinear degenerate problem in anisotropic variable exponent spaces, Bulletin of the Malaysian Mathematical Sciences Society, in press.
  • M. Troisi, Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat., 18 (1969), 3-24.
  • L. Ven'-tuan, On embedding theorems for spaces of functions with partial derivatives of various degree of summability, Vestnik Leningrad. Univ., 16 (1961), 23-37.
  • E. Zeidler, Nonlinear Analysis and its Applications II B: Nonlinear Monotone Operators, Springer, Berlin, 1985.
  • V. V. Zhikov, Meyer-type estimates for solving the nonlinear Stokes system, Differentrial'nye Uraveniya, 33(1) (1997), 107-114.