Taiwanese Journal of Mathematics
- Taiwanese J. Math.
- Volume 16, Number 2 (2012), 713-732.
TWO-WEIGHT NORM INEQUALITIES FOR CERTAIN SINGULAR INTEGRALS
R. A. Bandaliev and K. K. Omarova
Abstract
In this paper we prove the boundedness of certain convolution operator in a weighted Lebesgue space with kernel satisfying the generalized Hörmander's condition. The sufficient conditions for the pair of weights ensuring the validity of two-weight inequalities of a strong type and of a weak type for singular integral with kernel satisfying the generalized Hörmander's condition are found.
Article information
Source
Taiwanese J. Math., Volume 16, Number 2 (2012), 713-732.
Dates
First available in Project Euclid: 18 July 2017
Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500406611
Digital Object Identifier
doi:10.11650/twjm/1500406611
Mathematical Reviews number (MathSciNet)
MR2892908
Zentralblatt MATH identifier
1257.47035
Subjects
Primary: 46B50: Compactness in Banach (or normed) spaces 26D15: Inequalities for sums, series and integrals 47B38: Operators on function spaces (general)
Keywords
weighted Lebesgue space singular integral kernel generalized Hörmander's condition boundedness
Citation
Bandaliev, R. A.; Omarova, K. K. TWO-WEIGHT NORM INEQUALITIES FOR CERTAIN SINGULAR INTEGRALS. Taiwanese J. Math. 16 (2012), no. 2, 713--732. doi:10.11650/twjm/1500406611. https://projecteuclid.org/euclid.twjm/1500406611