Taiwanese Journal of Mathematics


Pawel Kolwicz and Agata Panfil

Full-text: Open access


First we present the local $\Delta_2^E$ condition in generalized Calderón-Lozanovskiĭ spaces $E_\varphi$ and we discuss the relationships between the local and the global $\Delta_2^E$ condition in such spaces. We also give a full characterisation for a point of $B(E_\varphi)$ to have an order continuous norm. Then we apply the main result to particular spaces, i.e. Calderón-Lozanovskiĭ spaces and Orlicz-Lorentz spaces.

Article information

Taiwanese J. Math., Volume 16, Number 1 (2012), 259-282.

First available in Project Euclid: 18 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 46E30: Spaces of measurable functions (Lp-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) 46B20: Geometry and structure of normed linear spaces 46B42: Banach lattices [See also 46A40, 46B40] 46B45: Banach sequence spaces [See also 46A45] 46A45: Sequence spaces (including Köthe sequence spaces) [See also 46B45]

Köthe spaces generalized Calderón-Lozanovskiĭ spaces Orlicz-Lorentz spaces global and local $\Delta_2^E$ condition points of order continuous norm


Kolwicz, Pawel; Panfil, Agata. LOCAL $\Delta_2^E$ CONDITION IN GENERALIZED CALDERÓN-LOZANOVSKĬ SPACES. Taiwanese J. Math. 16 (2012), no. 1, 259--282. doi:10.11650/twjm/1500406540. https://projecteuclid.org/euclid.twjm/1500406540

Export citation


  • J. Cerdá, H. Hudzik and M. Masty\lio, On the geometry of some Calderón-Lozanovski\uiin interpolation spaces, Indag. Math. N.S., 6(1) (1995), 35-49.
  • S. Chen, Geometry of Orlicz spaces, Dissertationes Math., 356 (1996), 1-204.
  • P., Foralewski, and H., Hudzik, Some, basic, properties of generalised Calderón- Lozanovski\uiin spaces, Collect. Math., 48(4-6) (1997), 523-538.
  • P. Foralewski and H. Hudzik, On some geometrical and topological properties of generalised Calderón-Lozanovski\uiin sequence spaces spaces, Houston J. Math., 25(3) (1999), 523-542.
  • H. Hudzik, Geometry of some classes of Banach function spaces, Banach and function spaces, Yokohama Publ., Yokohama, 2004, pp. 17-57.
  • H. Hudzik,\! A. Kamińska\! and M. Masty\li o,\! Geometric properties of, some, Calderón- Lozanovski\uiin spaces and Orlicz-Lorentz spaces, Houston J. Math., 23(3) (1996), 523-542.
  • H. Hudzik and A. Narloch, Local monotonicity structure of Calderón-Lozanovski\uiin spaces, Indag. Math. N. S., 15(1) (2004), 1-12.
  • H. Hudzik and A. Narloch, Relationships between monotonicity and complex rotundity properties with some consequences, Math. Scand., 96 (2005), 289-306.
  • W. B. Johnson and J. Lindenstrauss, Handbook of the geometry of Banach spaces, Vols. 1 and 2, Elsevier, 2001.
  • A. Kamińska, L. Maligranda and L. E. Persson, Indices, convexity and concavity of Calderón-Lozanovski\uiin spaces, Math. Scand., 92(1) (2003), 141-160.
  • P. Kolwicz, Rotundity properties in Calderón-Lozanovski\uiin spaces, Houston J. Math., 31(3) (2005), 883-912. \def\lil\raisebox0.15exriptsize /
  • P. Kolwicz and R. P\li uciennik, Local $\Delta_2^E$ condition as a crucial tool for local structure of Calderón-Lozanovski\uiin spaces, J. Math. Anal. Appl., 356(2) (2009), 605-614.
  • P. Kolwicz and R. P\li uciennik, Points of upper local uniform monotonicity in Calderón-Lozanovski\uiin spaces, J. Convex Anal., 17(1) (2010), 111-130.
  • S. G. Krein, Yu. J. Petunin and E. H. Semenov, Interpolation of linear operators, Translations of Mathematical Monographs, Vol. 54, American Mathematical Society, Providence, R.I., 1982.
  • J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II, Springer-Verlag, 1979.
  • L. Maligranda, Orlicz spaces and Interpolation, Seminars in Math., 5, Campinas, 1989.
  • M. Mastyo, Interpolation of linear operators in Calderón-Lozanovski\uiin spaces, Comment. Math. Prace Mat., 26 (1986) 247-256.