Taiwanese Journal of Mathematics

LEVITIN-POLYAK WELL-POSEDNESS FOR GENERALIZED QUASI-VARIATIONAL INCLUSION AND DISCLUSION PROBLEMS AND OPTIMIZATION PROBLEMS WITH CONSTRAINTS

San-Hua Wang and Nan-Jing Huang

Full-text: Open access

Abstract

In this paper, Levitin-Polyak well-posedness for generalized quasi-variational inclusion and disclusion problems are introduced and studied. Necessary and sufficient conditions for Levitin-Polyak well-posedness of these problems are proved. Moreover, Levitin-Polyak well-posedness for optimization problems with generalized quasi-variational inclusion problems, generalized quasi-variational disclusion problems and scalar generalized quasi-equilibrium problems as constraints are also given under some suitable conditions.

Article information

Source
Taiwanese J. Math., Volume 16, Number 1 (2012), 237-257.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500406539

Digital Object Identifier
doi:10.11650/twjm/1500406539

Mathematical Reviews number (MathSciNet)
MR2887863

Zentralblatt MATH identifier
1238.49043

Subjects
Primary: 49J27: Problems in abstract spaces [See also 90C48, 93C25] 49J40: Variational methods including variational inequalities [See also 47J20]

Keywords
Levitin-Polyak well-posedness generalized quasi-variational inclusion problem generalized quasi-variational disclusion problem optimization problem approximating solution sequence

Citation

Wang, San-Hua; Huang, Nan-Jing. LEVITIN-POLYAK WELL-POSEDNESS FOR GENERALIZED QUASI-VARIATIONAL INCLUSION AND DISCLUSION PROBLEMS AND OPTIMIZATION PROBLEMS WITH CONSTRAINTS. Taiwanese J. Math. 16 (2012), no. 1, 237--257. doi:10.11650/twjm/1500406539. https://projecteuclid.org/euclid.twjm/1500406539


Export citation

References

  • J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984.
  • E. Bednarczuck and J. P. Penot, Metrically well-set minimization problems, Appl. Math. Optim., 26 (1992), 273-285.
  • E. Cavazzuti and J. Morgan, Well-posed saddle point problems. in: Optimization, Theory and Algorithms, J. B. Hirriart-Urruty, W. Oettli and J. Stoer, (eds.), Marcel Dekker, New York, 1983, pp. 61-76.
  • L. C. Ceng, N. Hadjisavvas, S. Schaible and J. C. Yao, Well-posedness for mixed quasivariational-like inequalities, J. Optim. Theory Appl., 139 (2008), 109-125.
  • L. C. Ceng and J. C. Yao, Well-posedness of generalized mixed variational inequalities, inclusion problems and fixed point problems, Nonlinear Anal. TMA, 69 (2008), 4585-4603.
  • G. P. Crespi, A. Guerraggio and M. Rocca, Well posedness in vector optimization problems and vector variational inequalities, J. Optim. Theory Appl., 132 (2007), 213-226.
  • A. L. Dontchev and T. Zolezzi, Well-posed optimization problems, Lecture Notes in Mathematics, Vol. 1543, Springer, Berlin, 1993.
  • M. Durea, Scalarization for pointwise well-posed vectorial problems, Math. Meth. Oper. Res., 66 (2007), 409-418.
  • Y. P. Fang and R. Hu, Parametric well-posedness for variational inequalities defined by bifunctions, Comput. Math. Appl., 53 (2007), 1306-1316.
  • Y. P. Fang, R. Hu and N. J. Huang, Well-posedness for equilibrium problems and for optimization problems with equilibrium constraints, Comput. Math. Appl., 55(1) (2008), 89-100.
  • Y. P. Fang, N. J. Huang and J. C. Yao, Well-posedness of mixed variational inequalities, inclusion problems and fixed point problems, J. Global Optim., 41 (2008), 117-133.
  • Y. P. Fang, N. J. Huang and J. C. Yao, Well-posedness by perturbations of mixed variational inequalities in Banach spaces, European J. Oper. Res., 201 (2010), 682- 692.
  • N. X. Hai and P. Q. Khanh, The solution existence of general variational inclusion problems, J. Math. Anal. Appl., 328 (2007), 1268-1277.
  • N. J. Huang, X. J. Long and C. W. Zhao, Well-posedness for vector quasi-equilibrium problems with applications, J. Indust. Manag. Optim., 5(2) (2009), 341-349.
  • X. X. Huang and X. Q. Yang, Generalized Levitin-Polyak well-posedness in constrained optimization, SIAM J. Optim., 17 (2006), 243-258.
  • X. X. Huang, X. Q. Yang and D. L. Zhu, Letivin-Polyak well-posedness of variational inequalitiy problems with functional constraints, J. Global Optim., 44 (2009), 159-174.
  • K. Kimura, Y. C. Liou, S. Y. Wu and J. C. Yao, Well-Posedness for parametric vector equilibrium problems with applications, J. Indus. Manag. Optim., 4 (2008), 313-327.
  • K. Kuratowski, Topology, Vols. 1 and 2, Academic Press, New York, NY, 1968.
  • B. Lemaire, Well-posedness, conditioning, and regularization of minimization, inclusion, and fixed point problems, Pliska Studia Mathematica Bulgaria, 12 (1998), 71-84.
  • B. Lemaire, C. Ould Ahmed Salem and J. P. Revalski, Well-posedness by perturbations of variational problems, J. Optim. Theory Appl., 115(2) (2002), 345-368.
  • E. S. Levitin and B. T. Polyak, Convergence of minimizing sequences in conditional extremum problem, Soviet Mathematics Doklady, 7 (1966), 764-767.
  • S. J. Li and M. H. Li, Levitin-Polyak well-posedness of vector equilibrium problems, Math. Meth. Oper. Res., 69 (2009), 125-140.
  • M. H. Li, S. J. Li and W. Y. Zhang, Levitin-Polyak well-posedness of generalized vector quasi-equilibrium problems, J. Indust. Manag. Optim., 5(4) (2009), 683-696.
  • M. B. Lignola and J. Morgan, Approximating solutions and $\alpha$-well-posedness for variational inequalities and Nash equilibria, in: Decision and Control in Management Science, Kluwer Academic Publishers, Dordrecht, (2002), pp. 367-378.
  • M. B. Lignola, Well-posedness and L-well-posedness for quasivariational inequalities, J. Optim. Theory Appl., 128(1) (2006), 119-138.
  • L. J. Lin, Systems of generalized quasi-variational inclusions problems with applications to variational analysis and optimization problems, J. Global Optim., 38 (2007), 21-39.
  • L. J. Lin, Variational inclusions problems with applications to Ekeland's variational principle, fixed point and optimization problems, J. Global Optim., 39 (2007), 509-527.
  • L. J. Lin and C. I. Tu, The studies of systems of variational inclusions problems and variational disclusions problems with applications, Nonlinear Anal. TMA, 69 (2008), 1981-1998.
  • L. J. Lin, S. Y. Wang and C. S. Chuang, Existence theorems of systems of variational inclusion problems with applications, J. Global Optim., 40 (2008), 751-764.
  • L. J. Lin, Systems of variational inclusion problems and differential inclusion problems with applications, J. Global Optim., 44 (2009), 579-591.
  • L. J. Lin and C. S. Chuang, Well-posedness in the generalized sense for variational inclusion and disclusion problems and well-posedness for optimization problems with constraint, Nonlinear Anal. TMA, 70 (2009), 3609-3617.
  • X. J. Long, N. J. Huang and K. L. Teo, Levitin-Polyak well-posedness for equilibrium problems with functional constraints, J. Inequal. Appl., 2008, Article ID 657329.
  • X. J. Long and N. J. Huang, Metric characterizations of $\alpha$-well-posedness for symmetric quasi-equilibrium problems, J. Global Optim., 45 (2009), 459-471.
  • R. Lucchetti and F. Patrone, A characterization of Tyhonov well-posedness for minimum problems, with applications to variational inequalities, Numer. Funct. Anal. Optim., 3(4) (1981), 461-476.
  • R. Lucchetti and J. Revalski, (eds.), Recent Developments in Well-Posed Variational Problems, Kluwer Academic Publishers, Dordrecht, Holland, 1995.
  • M. Margiocco, F. Patrone and L. Pusillo, A new approach to Tykhonov well-posedness for Nash equilibria, Optimization, 40(4) (1997), 385-400.
  • M. Margiocco, F. Patrone and L. Pusillo, On the Tykhonov well-posedness of concave games and Cournot oligopoly games, J. Optim. Theory Appl., 112(2) (2002), 361-379.
  • E. Miglierina, E. Molho and M. Rocca, Well-posedness and scalarization in vector optimization, J. Optim. Theory Appl., 126 (2005), 391-409.
  • J. Morgan, Approximations and well-posedness in multicriteria games, Ann. Oper. Res., 137 (2005), 257-268.
  • L. H. Peng, C. Li and J. C. Yao, Well-posedness of a class of perturbed optimization problems in Banach spaces, J. Math. Anal. Appl., 346 (2008), 384-394.
  • A. Petruşel, I. A. Rus and J. C. Yao, Well-posedness in the generalized sense of the fixed point problems for multivalued operators, Taiwanese J. Math., 11(3) (2007), 903-914.
  • J. P. Revalski, Hadamard and strong well-posedness for convex programs, SIAM J. Optim., 7 (1997), 519-526.
  • P. H. Sach and L. A. Tuan, Generalizations of vector quasivariational inclusion problems with set-valued maps, J. Global Optim., 43 (2009), 23-45.
  • N. N. Tam, J. C. Yao and N. D. Yen, Solution methods for pseudomonotone variational inequalities, J. Optim. Theory Appl., 138 (2008), 253-273.
  • A. N. Tykhonov, On the stability of the functional optimization problems, USSR J. Comput. Math. Math. Phys., 6(4) (1966), 28-33.
  • H. Yang and J. Yu, Unified approaches to well-posedness with some applications, J. Global Optim., 31 (2005), 371-381.
  • T. Zolezzi, Well-posedness criteria in optimization with application to the calculus of variations, Nonlinear Anal. TMA, 25 (1995), 437-453.
  • T. Zolezzi, Extended well-posedness of optimization problems, J. Optim. Theory Appl., 91 (1996), 257-266.