Taiwanese Journal of Mathematics

MASCHKE-TYPE THEOREM AND DUALITY THEOREM FOR WEAK TWISTED SMASH PRODUCTS

Xiao-yan Zhou

Full-text: Open access

Abstract

Let $H$ be a weak Hopf algebra in the sense of Böhm and Szlachányi [3] and $A$ a weak $H$-bimodule algebra. Then in this paper we first introduce the notion of a weak twisted smash product $A \star H$ and then find some sufficient and necessary conditions making it into a weak bialgebra. Furthermore, we give a Maschke-type theorem for the weak twisted smash product over semisimple weak Hopf algebra $H$, which generalizes the well-known Maschke-type theorem in [5, 15, 17]. Finally, we obtain an analogue of the duality theorem for the weak twisted smash products.

Article information

Source
Taiwanese J. Math., Volume 15, Number 6 (2011), 2701-2719.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500406492

Digital Object Identifier
doi:10.11650/twjm/1500406492

Mathematical Reviews number (MathSciNet)
MR2896139

Zentralblatt MATH identifier
1257.16029

Subjects
Primary: 16W30

Keywords
weak Hopf algebras weak twisted smash products Maschke-type theorem duality theorem

Citation

Zhou, Xiao-yan. MASCHKE-TYPE THEOREM AND DUALITY THEOREM FOR WEAK TWISTED SMASH PRODUCTS. Taiwanese J. Math. 15 (2011), no. 6, 2701--2719. doi:10.11650/twjm/1500406492. https://projecteuclid.org/euclid.twjm/1500406492


Export citation

References

  • [4.] S. Caenepeel and E. D. Groot, Modules over weak entwining structures, Contemp. Math., 267 (2000), 31-54. \item [5.] M. Cohen and D. Fishman, Hopf algebra actions, J. Algebra, 100 (1986), 363-379. \item [6.] M. Cohen and S. Montgomery, Group graded rings, smash products, and group actions. Trans. Amer. Math. Soc., 282 (1984), 237-258. \item [7.] Y. Doi and M. Takeuchi, Multiplication alteration by two-cocycles in the quantum view, Comm. Algebra, 22 (1994), 5715-5732. \item [8.] V. G. Drinfeld, Quantum groups, in: proceedings of the International Congress of Mathematicians, 1 (1986), 798-820. \item [9.] R. K. Molnar, Semi-direct products of Hopf algebras, J. Algebra, 47 (1977), 29-51. \item [10.] D. Nikshych, A duality theorem for quantum groupoids, Contemp. Math., 267 (2000), 237-243. \item [11.] D. Nikshych, On the structure of weak Hopf algebras, Adv. Math., 170 (2002), 257-286. \item [12.] D. Nikshych, V. Turaev and L. Vainerman, Invariants of knots and 3-manifolds from quantum groupoids, Topology and its application, 127 (2003), 91-123. \item [13.] M. E. Sweedler, Hopf Algebras, Benjamin, New York, 1969. \item [14.] P. Vecseryés, Larson-Sweedler theorem and the role of grouplike elements in weak Hopf algebras, J. Algebra, 270 (2003), 471-520. \item [15.] S. H. Wang and Y. G. Kim, Quasitriangular structure for a class of Hopf algebras of dimension $p^{6}$, Comm. Algebra, 32 (2004), 1401-1423. \item [16.] S. H. Wang and J. Q. Li, On twisted smash products for bimodule algebras and the Drinfeld double, Comm. Algebra, 26 (1998), 2435-2444. \item [17.] L. Y. Zhang, Maschke-type theorem and morita context over weak Hopf algebras, Science in China: Series A Math., 49(5) (2006), 587-598. \item [18.] L. Y. Zhang and S. L. Zhu, Fundamental theorems of weak Doi-Hopf modules and semisimple weak smash product Hopf algebras, Comm. Algebra, 32(9) (2004), 3403-3415.