Taiwanese Journal of Mathematics


Medo Pepić

Full-text: Open access


Given a Vilenkin group G, a scalar matrix $\Lambda = [\lambda_{ij}]_{i \in \mathbb{N}, j \in \mathbb{N}_0}$, a function $f \in L^1(G)$, and a point $x \in G$ we introduce, for each $\alpha \in \mathbb{R}$, the $(\Lambda,\alpha)$ − derivative $f$ at $x$ denoted by $f^{(\Lambda,\alpha)}(x)$. We also introduce the sets: $$ M_\alpha = M(G,\Lambda,\alpha,x) := \big\{ f \in L^1(G):\exists f^{(\Lambda,\alpha)}(x) \big\}, $$ $$ M = M(G,\Lambda,x) := \{f \in L^1(G):\exists f^\Lambda(x)\}; $$ where $f^\Lambda(x)$ derivative in [8], which is a generalization of Onneweer’s derivative $f^{[1]}(x)$ in [6]. We proved:

(a) Five theorems which express essential characteristics of $(\Lambda,\alpha)$− derivative,

(b) $M = M_0$,

(c) $(\forall \alpha,\beta \in \mathbb{R}) \wedge (\alpha \lt \beta) \Rightarrow (M_\alpha \subseteq M_\beta) \wedge (M_\beta \setminus M_\alpha \not= \theta)$.

Statement b) states that the method $(\Lambda,\alpha)$ − differentiation, for $\alpha = 0$, is equal to $\Lambda$ − differentiation and statement  c) says that $(\Lambda,\alpha)$− differentiation increases with increasing $\alpha \in \mathbb{R}$.

Article information

Taiwanese J. Math., Volume 15, Number 6 (2011), 2387-2402.

First available in Project Euclid: 18 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 43A75: Analysis on specific compact groups

Vilenkin group differentiation of functions


Pepić, Medo. DIFFERENTIATION ON VILENKIN GROUPS USING A MATRIX. Taiwanese J. Math. 15 (2011), no. 6, 2387--2402. doi:10.11650/twjm/1500406477. https://projecteuclid.org/euclid.twjm/1500406477

Export citation


  • G. N. Agaev, N. Ya. Vilenkin, G. M. Dzafarli and A. I. Rubinshtein, Mul$^{\prime}$tiplikativnye sistemy funkci\vii, garmonicheskii\vii, anaiz na nul$^{\prime}$mernnykh gruppakh, Elm, Baku, 1981.
  • P. L. Butzer and H. J. Wagner, Walsh- Fourier series and the concept of a derivative, Appl. Anal., 3(1) (1973), 29-46.
  • J. E. Gibbs, B. Ireland and J. E. Marshall, A generalization of the Gibbs differentiation, Theory and application of Wals and other nonsinusoidal functions, June 28-29, 1973.
  • J. E. Gibbs and M. J. Millard, Wals functions as solutions of a logical differentiall equation, NPL DES Rept, (1972), N$^{o}$ 1.
  • E. Hewitt and K. A. Ross, Abstract harmonic analysis, Vol. I, Springer-Verlag, Berlin, 1963, (translated in Nauka, Moskva, 1975).
  • C. W. Onneweer, On the Definition of Dyadic Differentiation, Applicable Analysis, 9 (1979), 267-278.
  • J. Pall and Simon, On a generalization of concept of derivative, Acta Math. Acad. Sci. Hung., 29(1-2) (1977), 155-164.
  • M. Pepić, Differentiation of functions on Vilenkin groups, Matematicki Bilten, 23 (XLIX), Skopje, Makedonija, 1999, pp. 33-46.
  • F. Schipp, On the dyadic derivative, Acta Math. Acad. Sci. Hung., 28(1-2) (1976), 145-152.
  • N. Ya. Vilenkin, On a class of complete orhtonormal systems, Izv. ANSSSR, Ser. Math., 11 (1947), 363-400; Amer. Math. Soc. Trans. Ser. 2, 28 (1963), 1-35.