Taiwanese Journal of Mathematics

$\Delta$-STATISTICAL BOUNDEDNESS FOR SEQUENCES OF FUZZY NUMBERS

H. Altinok and M. Mursaleen

Full-text: Open access

Abstract

In this article we introduce the notion of $\Delta$-statistical boundedness for fuzzy real numbers and examine its some properties. We also give some relations related to this concept and construct some interesting examples.

Article information

Source
Taiwanese J. Math., Volume 15, Number 5 (2011), 2081-2093.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500406424

Digital Object Identifier
doi:10.11650/twjm/1500406424

Mathematical Reviews number (MathSciNet)
MR2880394

Zentralblatt MATH identifier
1238.40002

Subjects
Primary: 40A05: Convergence and divergence of series and sequences 40C05: Matrix methods 46A45: Sequence spaces (including Köthe sequence spaces) [See also 46B45] 03E72: Fuzzy set theory

Keywords
fuzzy numbers statistical convergence statistical boundedness

Citation

Altinok, H.; Mursaleen, M. $\Delta$-STATISTICAL BOUNDEDNESS FOR SEQUENCES OF FUZZY NUMBERS. Taiwanese J. Math. 15 (2011), no. 5, 2081--2093. doi:10.11650/twjm/1500406424. https://projecteuclid.org/euclid.twjm/1500406424


Export citation

References

  • B. Altay and F. Başar, On the fine spectrum of the difference operator $\Delta $ on $c_{0}$ and $c,$ Inform. Sci., 168(1-4) (2004), 217-224.
  • Y. Altin, M. Et and R. Çolak, Lacunary statistical and lacunary strongly convergence of generalized difference sequences of fuzzy numbers. Comput. Math. Appl., 52(6-7) (2006), 1011-1020.
  • Y. Altin, M. Et and B. C. Tripathy, On pointwise statistical convergence of sequences of fuzzy mappings, J. Fuzzy Math., 15(2) (2007), 425-433.
  • Y. Altin, M. Et and M. Başar\ilnr, On some generalized difference sequences of fuzzy numbers. Kuwait J. Sci. Engrg., 34(1A) (2007), 1-14.
  • H. Altinok, R. Çolak and M. Et, $\lambda $-Difference sequence spaces of fuzzy numbers, Fuzzy Sets and Systems, 160(21), (2009), 3128-3139
  • S. Aytar, Statistical limit points of sequences of fuzzy numbers, Inform. Sci., 165 (2004), 129-138.
  • S. Aytar and S. Pehlivan,. Statistically monotonic and statistically bounded sequences of fuzzy numbers, Inform. Sci., 176(6) (2006), 734-744.
  • F. Başar and B. Altay, On the space of sequences of $p$-bounded variation and related matrix mappings, Ukrainian Math. J., 55(1) (2003), 136-147.
  • M. Başar\ilnr and M. Mursaleen, Some difference sequences spaces of fuzzy numbers, J. Fuzzy Math., 12(1) (2004), 1-6.
  • T. Bilgin, $\Delta $-Statistical and strong $\Delta $-Ces áro convergence of sequences of fuzzy numbers, Math. Commun., 8(1) (2003), 95-100.
  • R. Çolak, H. Altinok and M. Et, Generalized difference sequences of fuzzy numbers, Chaos, Solitons and Fractals, 40(3), (2009), 1106-1117.
  • P. Diamond and P. Kloeden, Metric spaces of fuzzy sets: Theory and Applications, World Scientific, 1994, Singapore.
  • M. Et, H. Altinok and R. Çolak, On $\lambda$-statistical convergence of difference sequences of fuzzy numbers, Inform. Sci., 176, (2006), 2268-2278.
  • H. Fast, Sur la convergence statistique, Colloquium Math., 2 (1951), 241-244.
  • J. A. Fridy, On statistical convergence, Analysis, 5(4) (1985), 301-313.
  • J. A. Fridy and C. Orhan, Statistical limit superior and limit inferior. Proc. Amer. Math. Soc., 125(12) (1997), 3625-3631.
  • H. Kawamura, A. Tani, M. Yamada and K. Tsunoda, Real time prediction of earthquake ground motions and structural responses by statistic and fuzzy logic, First International Symposium on Uncertainty Modeling and Analysis, Proceedings., USA, 3-5 Dec. 1990, pp. 534-538.
  • H. K\ilnzmaz, On certain sequence spaces, Canad. Math. Bull., 24(2) (1981), 169-176.
  • J. S. Kwon, On statistical and $p-$Cesaro convergence of fuzzy numbers, Korean J. Comput. Appl. Math., 7(1) (2000), 195-203.
  • V. Lakshmikantham and R. N. Mohapatra, Theory of Fuzzy Differential Equations and Inclusions, Taylor and Francis, New York, 2003.
  • M. Matloka, Sequences of fuzzy numbers, BUSEFAL, 28 (1986), 28-37.
  • M. Mursaleen and M. Başar\ilnr, On some new sequence spaces of fuzzy numbers, Indian J. Pure Appl. Math., 34(9) (2003), 1351-1357.
  • S. Nanda, On sequences of fuzzy numbers, Fuzzy Sets and Systems, 33(1) (1989), 123-126.
  • F. Nuray and E. Savaş, Statistical convergence of fuzzy numbers, Math. Slovaca, 45(3) (1995), 269-273.
  • T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca, 30(2) (1980), 139-150.
  • E. Savaş, A note on sequence of fuzzy numbers, Inform. Sci., 124(1-4) (2000), 297-300.
  • I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375.
  • B. C. Tripathy and A. J. Dutta, On fuzzy real-valued double sequence space $_{2}\ell _{F}^{p}$, Mathematical and Computer Modelling, 46(9-10) (2007), 1294-1299.
  • L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.