Taiwanese Journal of Mathematics

Quotients of Quantum Bornological Spaces

Anar Dosi

Full-text: Open access

Abstract

In the note we investigate the main duality properties of quantum (or local operator) spaces involving quantum bornology. Namely, we prove that each finite complete bornology admits precisely one quantization and each complete quantum space is a matrix bornology quotient of a local trace class algebra.

Article information

Source
Taiwanese J. Math., Volume 15, Number 3 (2011), 1287-1303.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500406300

Digital Object Identifier
doi:10.11650/twjm/1500406300

Mathematical Reviews number (MathSciNet)
MR2829912

Zentralblatt MATH identifier
1244.47060

Subjects
Primary: 47L25: Operator spaces (= matricially normed spaces) [See also 46L07]
Secondary: 46L07: Operator spaces and completely bounded maps [See also 47L25]

Keywords
quantum bornological spaces absolutely matrix convex set matrix seminorm Hilbert-Schmidt boundary exact matrix quotient mapping

Citation

Dosi, Anar. Quotients of Quantum Bornological Spaces. Taiwanese J. Math. 15 (2011), no. 3, 1287--1303. doi:10.11650/twjm/1500406300. https://projecteuclid.org/euclid.twjm/1500406300


Export citation

References

  • D. P. Blecher, The standard dual of an operator space, Pacific J. Math., 153(1) (1992), 15-30.
  • D. P. Blecher and V. I. Paulsen, Tensor products of quantum normed spaces, J. Funct. Anal., 99 (1991), 262-292.
  • D. P. Blecher, Notes on duality methods and operator spaces, http://www.math.uh.edu/ \symbol126dblecher/op.pdf
  • A. A. Dosiev, Local operator spaces, unbounded operators and multinormed $C^{\ast}$-algebras, J. Funct. Anal., 255 (2008), 1724-1760.
  • A. A. Dosi, Local operator algebras, fractional positivity and quantum moment problem, Trans. AMS, 363 (2011), 801-856.
  • A. A. Dosi, Noncommutative Mackey theorem, Intern. J. Math., 22(3) (2011), 1-7.
  • A. A. Dosi, Quantum domains, inductive limits and matrix duality, J. Math. Physics, 51(6) (2010), 1-43.
  • R. E. Edwards, Functional Analysis, Theory and Apllications, Holt, Rinehart and Winston, 1965.
  • E. G. Effros and Z.-J. Ruan, Operator spaces, London Math. Soc., Clarendon Press-Oxford, 2000.
  • E. G. Effros and C. Webster, Operator analogues of locally convex spaces, Operator Algebras and Applications, (Samos 1996), (Adv. Sci. Inst. Ser. C Math. Phys. Sci., 495), Kluwer, 1997.
  • A. Ya. Helemskii, Quantum functional analysis: Non-Coordinate Approach, AMS, Univ. Lect. Ser., 2010.
  • H. Hogbe-Nlend, Bornologies and functional analysis: introductory course on the theory of duality topology-bornology and its use in functional analysis, Elsevier, 1977.
  • R. Meyer, Analytic cyclic cohomology, PhD. Universität Münster, 1999.
  • H. Schaefer, Topological vector spaces, Springer-Verlag, 1970.
  • C. Webster, Local operator spaces and applications, Ph.D. University of California, Los Angeles, 1997.