Taiwanese Journal of Mathematics

Bounds on Feedback Numbers of de Bruijn Graphs

Xirong Xu, Jun-Ming Xu, and Yongchang Cao

Full-text: Open access

Abstract

The feedback number of a graph $G$ is the minimum number of vertices whose removal from $G$ results in an acyclic subgraph. We use $f(d,n)$ to denote the feedback number of the de Bruijn graph $UB(d,n)$. R. Královic and P. Ruzicka [Minimum feedback vertex sets in shuffle-based interconnection networks. Information Processing Letters, 86 (4) (2003), 191-196] proved that $f(2,n) = \lceil \frac{2^{n}-2}{3} \rceil$. This paper gives the upper bound on $f(d,n)$ for $d \ge 3$, that is, $f(d,n) \leq d^n \left(1 - \left( \frac{d}{1+d}\right)^{d-1} \right) + \binom{n+d-2}{d-2}$.

Article information

Source
Taiwanese J. Math., Volume 15, Number 3 (2011), 1101-1113.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500406287

Digital Object Identifier
doi:10.11650/twjm/1500406287

Mathematical Reviews number (MathSciNet)
MR2829900

Zentralblatt MATH identifier
1235.05143

Subjects
Primary: 05C85: Graph algorithms [See also 68R10, 68W05] 05C85: Graph algorithms [See also 68R10, 68W05] 68R10: Graph theory (including graph drawing) [See also 05Cxx, 90B10, 90B35, 90C35]

Keywords
graph theory feedback vertex set feedback number de Bruijn graphs cycles scyclic subgraph networks

Citation

Xu, Xirong; Xu, Jun-Ming; Cao, Yongchang. Bounds on Feedback Numbers of de Bruijn Graphs. Taiwanese J. Math. 15 (2011), no. 3, 1101--1113. doi:10.11650/twjm/1500406287. https://projecteuclid.org/euclid.twjm/1500406287


Export citation

References

  • V. Bafna, P. Berman and T. Fujito, A 2-approximation algorithm for the undirected feedback vertex set problem, SIAM J. Discrete Math., 12 (1999), 289-297.
  • R. Bar-Yehuda, D. Geiger, J. S. Naor and R. M. Roth, Approximation algorithms for the feedback vertex set problem with applications to constraint satisfaction and Bayesian inference, SIAM J. Comput, 27 (1998), 942-959.
  • S. Bau, L. W. Beineke, Z. Liu, G. Du and R. C. Vandell, Decycling cubes and grids, Utilitas Math., 59 (2001), 129-137.
  • S. Bau and L. W. Beineke, The decycling number of graphs, Australasian Journal of Combinatorics, 25 (2002), 285-298.
  • L. W. Beineke and R. C. Vandell, Decycling graphs, J. Graph Theory, 25 (1997), 59-77.
  • J. C. Bermond and C. Peyrat, De Bruijn and Kautz networks: a competitor for the hypercube? in: Hypercube and Distributed Computers, (F. Andre and J. P. Verjus eds.), North-Holland, Elsevier Science Publishers, 1989, pp. 278-293.
  • I. Caragiannis, C. Kaklamanis and P. Kanellopoulos, New bounds on the size of the minimum feedback vertex set in meshes and butterflies, Information Processing Letters, 83(5) (2002), 75-80.
  • P. Erdös, M. Saks and V. T. Sós, Maximum induced trees in graphs, J. Combin. Theory Ser. B., 41 (1986), 61-79.
  • P. Festa, P. M. Pardalos and M. G. C. Resende, Feedback set problems, Handbook of Combinatorial Optimization, (D.-Z. Du and P. M. Pardalos eds.), Vol. A, Kluwer, Dordrecht, 1999, p. 209.
  • R. Focardi, F. L. Luccio and D. Peleg, Feedback vertex set in hypercubes, Information Processing Letters, 76 (2000), 1-5.
  • M. R. Garey and D. S. Johnson, Computers and Intractability, Freeman, San Francisco, CA, 1979.
  • M. Jr. Hall, Combinatorics, (2nd Edition), John Wiley & Sons, New York, 1986.
  • R. M. Karp, Reducibility among combinatorial problems, in: Complexiry of Computer Compurutions, (R. E. Miller and J. W. Thatcher, eds.), New York, Plenum, 1972, pp. 85-103.
  • R. Královičc, and P. Ružz ičc ka, Minimum feedback vertex sets in shuffle-based interconnection networks, Information Processing Letters, 86(4) (2003), 191-196.
  • Y. D. Liang, On the feedback vertex set in permutation graphs, Information Processing Letters, 52 (1994), 123-129.
  • F. L. Luccio, Almost exact minimum feedback vertex set in meshes and butterflies, Information Processing Letters, 66 (1998), 59-64.
  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Number, John Wiley and Sons, New York, 1980.
  • N. Punnim, Decycling regular graphs, Australasian Journal of Combinatorics, 32 (2005), 147-162.
  • N. Punnim, The decycling number of cubic graphs, Combinatorial geometry and graph theory, Lecture Notes in Comput. Sci., 3330, Springer, Berlin, 2005, pp. 141-145,
  • N. Punnim, Decycling connected regular graphs, Australasian Journal of Combinatorics, 35 (2006), 155-169.
  • G. W. Jr. Smith and R. B. Walford, The identification of a minimal feedback vertex set of a directed graph, IEEE Trans. Circuits and Systems, CAS-22 (1975), 9-15.
  • C.-C. Wang, E. L. Lloyd and M. L. Soffa, Feedback vertex sets and cyclically reducible graphs, J. Assoc. Comput. Mach., 32 (1985), 296-313.
  • F.-H. Wang, C.-J. Hsu and J.-C. Tsai, Minimal feedback vertex sets in directed split-stars, Networks, 45(4) (2005), 218-223.
  • F.-H. Wang, Y.-L. Wang and J.-M. Chang, Feedback vertex sets in star graphs, Information Processing Letters, 89 (2004), 203-208.
  • J.-M. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht/Boston/London, 2001.
  • J.-M. Xu, Theory and Application of Graphs, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.
  • J.-M. Xu, Y.-Z. Wu, J. Huang and C. Yang, Feedback numbers of Kautz digraphs, Discrete Math., 307(13) (2007), 1589-1599.