Taiwanese Journal of Mathematics

Some Sufficient Conditions for Univalence of Certain Families of Integral Operators Involving Generalized Bessel Functions

Erhan Erhan, Halit Orhan, and H. M. Srivastava

Full-text: Open access


The main object of this paper is to give sufficient conditions for certain families of integral operators, which are defined here by means of the normalized form of the generalized Bessel functions, to be univalent in the open unit disk. In particular cases, we find the corresponding simpler conditions for integral operators involving the Bessel function, the modified Bessel function and the spherical Bessel function.

Article information

Taiwanese J. Math., Volume 15, Number 2 (2011), 883-917.

First available in Project Euclid: 18 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 30C45: Special classes of univalent and multivalent functions (starlike, convex, bounded rotation, etc.) 33C10: Bessel and Airy functions, cylinder functions, $_0F_1$
Secondary: 30C20: Conformal mappings of special domains 30C75: Extremal problems for conformal and quasiconformal mappings, other methods

analytic functions open unit disk univalent functions univalence conditions integral operators generalized Bessel functions Bessel modified Bessel and spherical Bessel functions Ahlfors-Becker and Becker univalence criteria Schwarz lemma


Erhan, Erhan; Orhan, Halit; Srivastava, H. M. Some Sufficient Conditions for Univalence of Certain Families of Integral Operators Involving Generalized Bessel Functions. Taiwanese J. Math. 15 (2011), no. 2, 883--917. doi:10.11650/twjm/1500406240. https://projecteuclid.org/euclid.twjm/1500406240

Export citation


  • L. V. Ahlfors, Sufficient conditions for quasiconformal extension, Ann. of Math. Stud., 79 (1974), 23-29.
  • J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math. $($Ser. $2)$, 17 (1915), 12-22.
  • Á. Baricz, Geometric properties of generalized Bessel functions, Publ. Math.Debrecen, 73 (2008), 155-178.
  • Á. Baricz, Functional inequalities involving special functions, J. Math. Anal. Appl., 319 (2006), 450-459.
  • Á. Baricz, Functional inequalities involving special functions. II, J. Math. Anal. Appl., 327 (2007), 1202-1213.
  • Á. Baricz, Some inequalities involving generalized Bessel functions, Math. Inequal. Appl., 10 (2007), 827-842.
  • Á. Baricz and B. A. Frasin, Univalence of integral operators involving Besselfunctions, Appl. Math. Lett., 23 (2010), 371-376.
  • Á. Baricz and S. Ponnusamy, Starlikeness and convexity of generalized Besselfunctions, Integral Transforms Spec. Funct., 21 (2010), 641-653.
  • J. Becker, Löwnersche Differentialgleichung und Schlichtheitskriterien, Math. Ann., 202 (1973), 321-335.
  • J. Becker, Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte funktionen, J. Reine Angew. Math., 255 (1972), 23-43.
  • D. Breaz and N. Breaz, Two integral operators, Stud. Univ. Babeş-Bolyai. Math., 47(3) (2002), 13-19.
  • D. Breaz and N. Breaz, The univalent conditions for an integral operator on the classes $S_{p}$ and $T_{2},$ J. Approx. Theory Appl., 1 (2005), 93-98.
  • D. Breaz and N. Breaz, Univalence of an integral operator, Mathematica $($Cluj$)$, 47(70) (2005), 35-38.
  • D. Breaz and N. Breaz, Univalence conditions for certain integral operators, Stud. Univ. Babeş-Bolyai Math., 47(2) (2002), 9-15.
  • D. Breaz, N. Breaz and H. M. Srivastava, An extension of the univalent condition for a family of integral operators, Appl. Math. Lett., 22 (2009), 41-44.
  • D. Breaz, S. Owa and N. Breaz, A new integral univalent operator, Acta Univ. Apulensis Math. Inform., 16 (2008), 11-16.
  • Y. J. Kim and E. P. Merkes, On an integral of powers of a spirallike function, Kyungpook Math. J., 12 (1972), 249-252.
  • S. S. Miller, P. T. Mocanu and M. O. Reade, Starlike integral operators, Pacific J. Math., 79 (1978), 157-168.
  • S. Moldoveanu and N. N. Pascu, Integral operators which preserve the univalence, Mathematica $($Cluj$)$, 32(55) (1990), 159-166.
  • N. N. Pascu, An improvement of Becker's univalence criterion, in: Proceedings of the Commemorative Session$:$ Simion Stoilow (Brasov, 1987), pp. 43-48.
  • V. Pescar, A new generalization of Ahlfor's and Becker's criterion of univalence, Bull. Malaysian Math. Soc., 19 (1996), 53-54.
  • V. Pescar, Univalence of certain integral operators, Acta Univ. Apulensis Math. Inform., 12 (2006), 43-48.
  • V. Pescar, New criteria for univalence of certain integral operators, Demonstratio Math., 33 (2000), 51-54.
  • V. Pescar and S. Owa, Sufficient conditions for univalence of certain integraloperators, Indian J. Math., 42 (2000), 347-351
  • J. A. Pfaltzgraff, Univalence of the integral of $\big(f^{\prime}(z)\big)^{\lambda },$ Bull. London Math. Soc., 7 (1975), 254-256.
  • N. Seenivasagan and D. Breaz, Certain sufficient conditions for univalence, Gen. Math., 15(4) (2007), 7-15.
  • H. M. Srivastava, E. Deniz and H. Orhan, Some general univalence criteria for a family of integral operators, Appl. Math. Comput., 215 (2010), 3696-3701.
  • H. M. Srivastava and S. Owa (Editors), Current Topics in Analytic Function Theory, World Scientifc Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.
  • R. Szász and P. Kupán, About the univalence of the Bessel functions, Stud. Univ. Babeş-Bolyai Math., 54(1) (2009), 127-132.
  • G. N. Watson, A Treatise on the Theory of Bessel Functions, Second edition,Cambridge University Press, Cambridge, London and New York, 1944.