Taiwanese Journal of Mathematics

Kurzweil-Henstock Integration on Manifolds

Varayu Boonpogkrong

Full-text: Open access

Abstract

In this paper, we give an alternative proof that the Kurzweil-Henstock integral using partition of unity is equivalent to the Lebesgue integral in the $n$-dimensional Euclidean space. We also define and discuss the Kurzweil-Henstock integral on manifolds.

Article information

Source
Taiwanese J. Math., Volume 15, Number 2 (2011), 559-571.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500406221

Digital Object Identifier
doi:10.11650/twjm/1500406221

Mathematical Reviews number (MathSciNet)
MR2810168

Zentralblatt MATH identifier
1234.26020

Subjects
Primary: 26A39: Denjoy and Perron integrals, other special integrals

Keywords
the K-H integral partition of unity manifolds

Citation

Boonpogkrong, Varayu. Kurzweil-Henstock Integration on Manifolds. Taiwanese J. Math. 15 (2011), no. 2, 559--571. doi:10.11650/twjm/1500406221. https://projecteuclid.org/euclid.twjm/1500406221


Export citation

References

  • W. Fleming, Functions of several variables, 2nd edition, Springer-Verlag, New York, 1977.
  • J. Jarnik and J. Kurzweil, A nonabsolutely convergnet integral which admits transformation and can be used for integration on manifolds, Czechoslovak Math. J., 35(1) (1985), 116-139.
  • J. Kurzweil and J. Jarnik, The PU-integral: its definition and some basic properties, Lecture Notes in Mathematics 1419 (New integrals: Proceedings of the Henstock Conference held in Coleraine, Northern Ireland, August 9-12, 1988), Springer-Verlag, Berlin, 1990, pp. 66-81.
  • Lee Peng Yee, Lanzhou Lectures on Henstock integration, World Scientific, Singapore, 1989.
  • Pang Tiangui, Partition of Unity and Integration, Honours Project, NUS, Singapore, 2004/2005.