Taiwanese Journal of Mathematics


Luis J. Alías and S. M. B. Kashani

Full-text: Open access


We study hypersurfaces either in the sphere $\mathbb{S}^{n+1}$ or in the hyperbolic space $\mathbb{H}^{n+1}$ whose position vector $x$ satisfies the condition $L_k x = Ax + b$, where $L_k$ is the linearized operator of the $(k+1)$-th mean curvature of the hypersurface for a fixed $k = 0, \ldots, n−1$, $A \in \mathbb{R}^{(n+2) \times (n+2)}$ is a constant matrix and $b \in \mathbb{R}^{n+2}$ is a constant vector. For every $k$, we prove that when $A$ is self-adjoint and $b=0$, the only hypersurfaces satisfying that condition are hypersurfaces with zero $(k+1)$-th mean curvature and constant $k$-th mean curvature, and open pieces of standard Riemannian products of the form $\mathbb{S}^m(\sqrt{1-r^2}) \times \mathbb{S}^{n-m}(r) \subset \mathbb{S}^{n+1}$, with $0 \lt r \lt 1$, and $\mathbb{H}^m(−\sqrt{1+r^2}) \times \mathbb{S}^{n-m}(r) \subset \mathbb{H}^{n+1}$, with $r \gt 0$. If $H_k$ is constant, we also obtain a classification result for the case where $b \neq 0$.

Article information

Taiwanese J. Math., Volume 14, Number 5 (2010), 1957-1977.

First available in Project Euclid: 18 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Alías, Luis J.; Kashani, S. M. B. HYPERSURFACES IN SPACE FORMS SATISFYING THE CONDITION $L_k x = Ax + b$. Taiwanese J. Math. 14 (2010), no. 5, 1957--1977. doi:10.11650/twjm/1500406026. https://projecteuclid.org/euclid.twjm/1500406026

Export citation


  • J. A. Aledo, L. J. Al\'\tiny las and A. Romero, A new proof of Liebmann classical rigidity theorem for surfaces in space forms, Rocky Mountain J. Math., 35 (2005), 1811-1824.
  • L. J. Al\'\tiny las, A. Ferrández and P. Lucas, Submanifolds in pseudo-Euclidean spaces satisfying the condition $\Delta x=Ax+B$, Geom. Dedicata, 42 (1992), 345-354.
  • L. J. Al\'\tiny las, A. Ferrández and P. Lucas, Hypersurfaces in space forms satisfying the condition $\Delta x=Ax+B$, Trans. Amer. Math. Soc., 347 (1995), 1793-1801.
  • L. J. Al\'\tiny las and N. Gürbüz, An extension of Takahashi theorem for the linearized operators of the higher order mean curvatures, Geom. Dedicata, 121 (2006), 113-127.
  • L. J. Al\'\tiny las, T. Kurose and G. Solanes, Hadamard-type theorems for hypersurfaces in hyperbolic spaces, Differential Geom. Appl., 24 (2006), 492-502.
  • B.-Y. Chen, Geometry of submanifolds. Pure and Applied Mathematics, No. 22. Marcel Dekker, Inc., New York, 1973.
  • B.-Y. Chen, Total mean curvature and submanifolds of finite type, Series in Pure Mathematics, 1. World Scientific Publishing Co., Singapore, 1984.
  • B.-Y. Chen and M. Petrovic, On spectral decomposition of immersions of finite type, Bull. Austral. Math. Soc., 44 (1991), 117-129.
  • S. Y. Cheng and S. T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann., 225 (1977), 195-204.
  • F. Dillen, J. Pas and L. Verstraelen, On surfaces of finite type in Euclidean $3$-space, Kodai Math. J., 13 (1990), 10-21.
  • O. J Garay, An extension of Takahashi's theorem, Geom. Dedicata, 34 (1990), 105-112.
  • T. Hasanis and T. Vlachos, Hypersurfaces of $E\sp {n+1}$ satisfying $\Delta x=Ax+B$, J. Austral. Math. Soc. Ser. A, 53 (1992), 377-384.
  • H. Lawson, Local rigidity theorems for minimal hypersurfaces, Ann. of Math., 89(2) (1969), 187-197.
  • R. C. Reilly, Extrinsic rigidity theorems for compact submanifolds of the sphere, J. Differential Geometry, 4 (1970), 487-497.
  • R. C. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Differential Geometry, 8 (1973), 465-477.
  • H. Rosenberg, Hypersurfaces of constant curvature in space forms, Bull. Sci. Math., 117 (1993), 211-239.
  • P. J. Ryan, Homogeneity and some curvature conditions for hypersurfaces, Tohoku Math. J., 21 (1969), 363-388.
  • T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18 (1966), 380-385.
  • B. Yang and X. Liu, Hypersurfaces satisfying $L_rx=Rx$ in sphere $\mathbb{S}^{n+1}$ or hyperbolic space $\mathbb{H}^{n+1}$, to appear in Proceedings Mathematical Sciences.