Taiwanese Journal of Mathematics

RICCI OPERATORS AND STRUCTURAL JACOBI OPERATORS ON REAL HYPERSURFACES IN A COMPLEX SPACE FORM

Jong Taek Cho

Full-text: Open access

Abstract

We give a classification of real hypersurfaces in a non-flat complex space form, whose almost contact structure operator, induced from the complex structure of the complex space form, commutes with the Ricci operator and at the same time commutes with the structural Jacobi operator. In particular, we classify real hypersurfaces in 2-dimensional complex projective and hyperbolic spaces satisfying the first commutativity condition.

Article information

Source
Taiwanese J. Math., Volume 14, Number 4 (2010), 1325-1336.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500405950

Digital Object Identifier
doi:10.11650/twjm/1500405950

Mathematical Reviews number (MathSciNet)
MR2663914

Zentralblatt MATH identifier
1215.53049

Subjects
Primary: 53B20: Local Riemannian geometry 53C15: General geometric structures on manifolds (almost complex, almost product structures, etc.) 53C25: Special Riemannian manifolds (Einstein, Sasakian, etc.)

Keywords
real hypersufaces complex space forms Ricci operators structural Jacobi operators

Citation

Cho, Jong Taek. RICCI OPERATORS AND STRUCTURAL JACOBI OPERATORS ON REAL HYPERSURFACES IN A COMPLEX SPACE FORM. Taiwanese J. Math. 14 (2010), no. 4, 1325--1336. doi:10.11650/twjm/1500405950. https://projecteuclid.org/euclid.twjm/1500405950


Export citation

References

  • S.-S. Ahn, S.-B. Lee and Y. J. Suh, On ruled real hypersurfaces in a complex space form, Tsukuba J. Math., 17(2) (1993), 311-322.
  • J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. Reine Angew. Math., 395 (1989), 132-141.
  • T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc., 269 (1982), 481-499.
  • J. T. Cho, Real hypersurfaces of a complex hyperbolic space satisfying a pointwise nullity condition, Indian J. Pure Appl. Math., 31(3) (2000), 265-276.
  • J. T. Cho and U-H. Ki, Jacobi operators on real hypersurfaces of complex projective space, Tsukuba J. Math., 22 (1997), 145-156.
  • J. T. Cho and U-H. Ki, Real hypersurfaces of complex projective space in terms of the Jacobi operators, Acta Math. Hungar., 80(1-2) (1998), 155-167.
  • U-H. Ki and Y. J. Suh, On real hypersurfaces of a complex space form, Math. J. Okayama, 32 (1990), 207-221.
  • M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc., 296 (1986), 137-149.
  • M. Kimura, Some real hypersurfaces of a complex projective space, Saitama Math. J., 5 (1987), 1-5; Correction in 10 (1992), 33-34.
  • M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space, Math. Z., 202 (1989), 299-311.
  • Y. Maeda, On real hypersurfaces of a complex projective space, J. Math. Soc. Japan, 28(3) (1989), 529-540.
  • M. Kon, Pseudo-Einstein real hypersurfaces of complex space forms, J. Diff. Geometry, 14 (1979), 339-354.
  • S. Montiel, Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan, 37 (1985), 515-535.
  • S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geom. Dedicata, 20 (1986), 245-261.
  • R. Niebergall and P. J. Ryan, Real hypersurfaces of complex space forms, Math. Sci. Res. Inst. Publ, 32 (1997), 233-305.
  • M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc., 212 (1975), 355-364.
  • R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math., 19 (1973), 495-506.
  • R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan, 15 (1975), 43-53, 507-516.