Taiwanese Journal of Mathematics

ON NEW HILBERT-PACHPATTE TYPE INTEGRAL INEQUALITIES

C.-J. Zhao and W.-S. Cheung

Full-text: Open access

Abstract

Inverses of some new inequalities similar to Hilbert’s inequality are established. Our results provide new estimates on these types of inequalities.

Article information

Source
Taiwanese J. Math., Volume 14, Number 4 (2010), 1271-1282.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500405943

Digital Object Identifier
doi:10.11650/twjm/1500405943

Mathematical Reviews number (MathSciNet)
MR2663910

Zentralblatt MATH identifier
1216.26013

Subjects
Primary: 26D15: Inequalities for sums, series and integrals

Keywords
Hilbert's inequality Hölder integral inequality Jensen integral inequality

Citation

Zhao, C.-J.; Cheung, W.-S. ON NEW HILBERT-PACHPATTE TYPE INTEGRAL INEQUALITIES. Taiwanese J. Math. 14 (2010), no. 4, 1271--1282. doi:10.11650/twjm/1500405943. https://projecteuclid.org/euclid.twjm/1500405943


Export citation

References

  • B. G. Pachpatte, On some new inequalities similar to Hilbert's inequality, J. Math. Anal. Appl., 226 (1998), 166-179.
  • G. D. Handley, J. J. Koliha and J. E. Pečarić, New Hilbert-Pachpatte Type Integral Inequalities, J. Math. Anal. Appl., 257 (2001), 238-250.
  • Minzhe Gao and Bicheng Yang, On the extended Hilbert's inequality, Proc. Amer. Math. Soc., 126 (1998), 751-759.
  • Jichang Kuang, On new extensions of Hilbert's integral inequality, J. Math. Anal. Appl., 235 (1999), 608-614.
  • Bicheng Yang, On new generalizations of Hilbert't inequality, J. Math. Anal. Appl., 248 (2000), 29-40.
  • Chang-jian Zhao, On Inverses of disperse and continuous Pachpatte's inequalities, Acta Math. Sin., 46 (2003), 1268-1273.
  • Chang-jian Zhao, Generalizations on two new Hilbert type inequalities, J. Math., 20 (2000), 413-416.
  • Chang-jian Zhao and L. Debnath, Some New Inverse Type Hilbert Integral Inequalities, J. Math. Anal. Appl., 262 (2001), 411-418.
  • G. D. Handley, J. J. Koliha and J. E. Pečc arić, A Hilbert type inequality, Tamkang J. Math., 31 (2000), 311-315.
  • G. H. Hardy, J. E. Littlewood and Pólya, Inequalities, Cambridge Univ. Press, Cambridge, U. K. 1934.
  • E. F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, Berlin-Göttingen, Heidelberg, 1961.