Taiwanese Journal of Mathematics

NONLINEAR RAYLEIGH-RITZ ITERATIVE METHOD FOR SOLVING LARGE SCALE NONLINEAR EIGENVALUE PROBLEMS

Ben-Shan Liao, Zhaojun Bai, Lie-Quan Lee, and Kwok Ko

Full-text: Open access

Abstract

A nonlinear Rayleigh-Ritz iterative (NRRIT) method for solving nonlinear eigenvalue problems is studied in this paper. It is an extension of the nonlinear Arnoldi algorithm due to Heinrich Voss. The efficiency of the NRRIT method is demonstrated by comparing with the inverse iteration method to solve a highly nonlinear eigenvalue problem arising from finite element electromagnetic simulation in accelerator modeling.

Article information

Source
Taiwanese J. Math., Volume 14, Number 3A (2010), 869-883.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500405872

Digital Object Identifier
doi:10.11650/twjm/1500405872

Mathematical Reviews number (MathSciNet)
MR2667722

Zentralblatt MATH identifier
1198.65072

Subjects
Primary: 65F15: Eigenvalues, eigenvectors

Keywords
nonlinear eigenvalue problem nonlinear Rayleigh-Ritz iterative method nonlinear Arnoldi accelerator modeling

Citation

Liao, Ben-Shan; Bai, Zhaojun; Lee, Lie-Quan; Ko, Kwok. NONLINEAR RAYLEIGH-RITZ ITERATIVE METHOD FOR SOLVING LARGE SCALE NONLINEAR EIGENVALUE PROBLEMS. Taiwanese J. Math. 14 (2010), no. 3A, 869--883. doi:10.11650/twjm/1500405872. https://projecteuclid.org/euclid.twjm/1500405872


Export citation

References

  • Z. Bai, J. Demmel, J. Dongarra, A. Ruhe and H. van der Vorst, eds., Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia, 2000.
  • Z. Bai and Y. Su, SOAR: A second-order Arnoldi method for the solution of the quadratic eigenvalue problem, SIAM J. Matrix Anal. Appl., 26(3) (2005), 640-659.
  • T. Betcke and H. Voss, A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems, Future Generation Computer Systems, 20(3) (2004), 363-372.
  • D. Bindel, Z. Bai, and J. Demmel, Model reduction for RF MEMS simulation, Lecture Notes in Computer Science, 3732 (2006), 286-295.
  • T. Davis, Algorihm 832: UMFPACK- an unsummetric-pattern multifrontal method, ACM Trans. on Math. Soft., 30 (2004), 196-199.
  • J. Demmel, S. Eisenstat, J. Gilbert, X. Li, and J. Liu, A supernodal approach to sparse partial pivoting, SIAM J. Matrix Anal. Appl., 20(3) (1999), 720-755.
  • H. Igarashi, Y. Sugawara, and T. Honma, A numerical computations of external $Q$ of resonant cavities, IEEE Trans. on Magnetics, 31(3) (1995), 1642-1645.
  • E. Jarlebring and H. Voss, Rational Krylov for nonlinear eigenproblems, an iterative projection method, Appl. of Math., 50(6) (2005), 543-554.
  • J. Jin, The Finite Element Method in Electromagnetics, Second Edition. Wiley, New Year, 2002.
  • L. Kaufman, Eignevalue problems in fiber optic design, SIAM J. Matrix Anal. Appl., 28(1) (2006), 105-117.
  • K. Ko, N. Folwell, L. Ge, A. Guetz, L. Lee, Z. Li, C. Ng, E. Prudencio, G. Schussman, R. Uplenchwar and L. Xiao. Advances in electromagnetic modelling through high performance computing, Technical Report SLAC-PUB-11789, Stanford Linear Accelerator Center, Menlo Park, CA, 2006.
  • L. Lee, Z. Bai, W. Gao, L. Ge, P. Husbands, M. Kowalski, X. Li, Z. Li, C. Ng, C. Yang, E. G. Ng, and K. Ko, Solving nonlinear eigenproblems in accelerator cavity design, Presentation at SIAM Annual Meeting, New Orleans, LA, July 2005.
  • L. Lee, L. Ge, Z. Li, C. Ng, K. Ko, B.-S. Liao, Z. Bai, W. Gao, C. Yang, P. Husbands, and E. G. Ng, Modeling RF cavity with external coupling, Presentation at SIAM Conference on Computational science and Engineering, Orlando, FL, Feb. 2005.
  • L. Lee, L. Ge, Z. Li, C. Ng, G. Schussman, and K. Ko, Achievements in ISICs/SAPP collaborations for electromagnetic modeling of acceleators. J. of Physics: Conference Series, 16 (2005), 205-209.
  • L. Lee, Z. Li, C. Ng, and K. Ko, Omega3P: A parallel finite-element eigenmode analysis code for accelerator cavities, Technical Report SLAC-PUB-13529, SLAC National Accelerator Laboratory, Menlo Park, CA, 2009.
  • T. A. Lenahan, Calculation of modes in an optical fiber using the finite element method and eispack, Bell System Technical Journal, 62 (1983), 2663-2694.
  • C. Limborg, Z. Li, L. Xiao, J. F. Schmerge, D. Dowell, S. gierman, E. Bong and S. Gilevich, RF design of the LCLS gun, LCLS-TN-05-3, February 2005.
  • V. Mehrmann and H. Voss, Nonlinear eigenvalue problems: A challenge for modern eigenvalue methods, Technical Report 83, Arbeitsbereich Mathematik, TU Hamburg-Harburg, 2004.
  • A. Neumaier, Residual inverse iteration for the nonlinear eigenvalue problem, SIAM J. Numer. Anal., 22 (1985), 914-923.
  • J. Planchard, Eigenfrequencies of a tube bundle placed in a confined fluid, Comput. Meth. Appl. Mech. and Eng., 30 (1982), 75-93.
  • A. Ruhe, Algorithms for the nonlinear eigenvalue problem, SIAM J. Numer. Anal., 10 (1973), 674-689.
  • A. Ruhe, A rational Krylov algorithm for nonlinear matrix eigenvalue problems, Zapiski Nauchnyh Seminarov POMI, 268 (2000), 176-180.
  • F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Rev., 43 (2001), 235-286.
  • H. Voss, A rational spectral problem in fluid-solid vibration, Electr. Trans. Numer. Anal., 16 (2003), 94-106.
  • H. Voss, An Arnoldi method for nonlinear eigenvalue problems, BIT Numerical Mathematics, 44(2) (2004), 387-401.
  • H. Voss, Numerical methods for sparse nonlinear eigenvalue problems, in: Proc. XVth Summer School on Software and Algorithms of Numerical Mathematic, Hejnice, Czech Republic, 2004.
  • C. Yang, Solving large-scale eigenvalue problems in SciDAC applications, Journal of Physics: Conference Series, 16 (2005), 425-434, (Proceedings of 2005 SciDAC Conference).