Taiwanese Journal of Mathematics

A METHOD FOR PROFILING THE DISTRIBUTION OF EIGENVALUES USING THE AS METHOD

Kenta Senzaki, Hiroto Tadano, Tetsuya Sakurai, and Zhaojun Bai

Full-text: Open access

Abstract

This paper is concerned with solving large-scale eigenvalue problems by algebraic sub-structuring and contour integral. We combine Algebraic Sub-structuring (AS) method and the Contour Integral Rayleigh-Ritz (CIRR) method. The AS method calculates approximate eigenpairs fast and has been shown to be efficient for vibration and acoustic analysis. However, the application areas of this method have been limited because its accuracy is usually lower than other methods. On the other hand, if the appropriate domains are chosen, the CIRR method produces accurate solutions. However, it is difficult to choose these domains without the information of eigenvalue distribution. We propose a combination of AS and CIRR such as the AS method is used as a method for profiling a distribution of eigenvalues, and the accurate solutions are produced by the CIRR method using the information of eigenvalue distribution provided by AS. We show our method is effective from the result of applying this method to the molecular orbital calculations.

Article information

Source
Taiwanese J. Math., Volume 14, Number 3A (2010), 839-853.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500405870

Digital Object Identifier
doi:10.11650/twjm/1500405870

Mathematical Reviews number (MathSciNet)
MR2667720

Zentralblatt MATH identifier
1198.65076

Subjects
Primary: 65F15: Eigenvalues, eigenvectors 65F50: Sparse matrices

Keywords
eigenvalue distribution profiling eigenvalues algebraic sub-structuring CIRR

Citation

Senzaki, Kenta; Tadano, Hiroto; Sakurai, Tetsuya; Bai, Zhaojun. A METHOD FOR PROFILING THE DISTRIBUTION OF EIGENVALUES USING THE AS METHOD. Taiwanese J. Math. 14 (2010), no. 3A, 839--853. doi:10.11650/twjm/1500405870. https://projecteuclid.org/euclid.twjm/1500405870


Export citation

References

  • J. K. Bennighof, An automated multi-level substructuring method for eigenspace computation in linear elastdynamics, SIAM J. Sci. Comput., 25, (2004), 2084-2106.
  • A. George, Nested Dissection of a Regular Finite Element Mesh, SIAM J. Numer. Anal., 10(2) (1973), 345-363.
  • W. C. Hurty, Vibrations of structure systems by component mode synthesis, Journal of the Engineering Mechanics Division, 86 (1960), 51-69.
  • Lapack-Linear Algebra Package, http://netlib.org/lapack.
  • METIS - Family of Multilevel Partitioning Algorithms, http://glaros.dtc.umn.edu/ gkhome/views/metis.
  • K. Bekas and Y. Saad, Computation of smallest eigenvalues using spectral Schur complements, SIAM J. Scientific Computing, 27 (2005), 458-481.
  • K. Elsseland and H. Voss, An a priori bound for Automated Multi-Level Substructuring, SIAM J. Matrix Anal. Appl., 28 (2006), 386-397.
  • T. Ikegami, T. Sakurai and U. Nagashima, Block Sakurai-Sugiura Method for Filter Diagonalization, in: Abstract of Recent Advances in Numerical Methods for Eigenvalue Problems, Hsinchu, 2008.
  • T. Sakurai and H. Sugiura, A projection method for generalized eigenvalue problems using numerical integration, Jounal of Computational Applied Mathmatics, 159 (2003), 119-128.
  • C. Yang, W. Gao, Z. Bai, X. S. Li, L. Lee, P. Husbands and E. Ng, An algebraic substructuring method for large-scale eigenvalue calculation, SIAM J. Sci. Comput., 27 (2005), 873-892.
  • A. Kropp and D. Heiserer, Efficient broadband vibro-accoustic analysis of passenger car bodies using an FE-based component mode synthesis approach, J. Computational Acoustics, 2 (2003), 139-157.
  • M. F. Kaplan, Implementation of Automated Multilevel Substructuring for Frequency Response Analysis of Structure, University of Texas at Austin, 2001.
  • P. Kravanja, T. Sakurai and M. Van Barel, On locating clusters of zeros of analytic functions, BIT, 39 (1999), 646-682.
  • P. Kravanja, T. Sakurai, H. Sugiura and M. Van Barel, A perturbation result for generalized eigenvalue problems and its application to error estimation in a quadrature method for computing zeros of analytic functions, J. Comput. Appl. Math., 161 (2003), 339-347.
  • H. A. van der Vorst and J. B. M. Melissen, A Petrov-Gelerkin type method for solving ${A} \bm{x} = \bm{b}$, where $A$ is a symmetric complex matrix, IEEE Trans. on Magnetics, 26 (1990), 706-708.
  • O. Schenk and K. Gärtner, Solving unsymmetric sparse systems of linear equations with PARDISO, Future Gen. Comput. Sys., 20 (2004), 457-587.
  • T. Sakurai, H. Tadano and U. Nagashima, A parallel eigensolver using contour integration for generalized eigenvalue problems in molecular simulation, in: Abstract of Recent Advances in Numerical Methods for Eigenvalue Problems, Hsinchu, 2008.
  • T. Sakurai and H. Tadano, CIRR: a Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems, Special Issue of Hokkaido Mathematical Journal, 36 (2007), 745-757.
  • T. Sakurai, P. Kravanja, H. Sugiura and M. Van Barel, An error analysis of two related quadrature methods for computing zeros of analytic functions, J. Comput. Appl. Math., 152 (2003), 467-480.
  • M. Okada, T. Sakurai and K. Teranishi, A preconditioner for Krylov subspace method using a sparse direct solver, in: Abstract of 2007 International Conference on Preconditioning Techniques for Large Sparse Matrix Problems in Scientific and Industrial Applications, Toulouse, Precond, 2007.
  • T. Sakurai, Y. Kodaki, H. Tadano, H. Umeda, Y. Inadomi, T. Watanabe and U. Nagashima, A master-worker type eigensolver for molecular orbital computation, Lecture Notes in Computer Sciences, 4699 (2007), 617-625.