Taiwanese Journal of Mathematics

NOTE ON F-IMPLICIT GENERALIZED VECTOR VARIATIONAL INEQUALITIES

Yen-Cherng Lin and Mu-Ming Wong

Full-text: Open access

Abstract

In this paper, we deal with weak and strong solutions to $F$-implicit generalized vector variational inequalities and $F$-implicit generalized (weak) vector variational inequalities. Several results of the existence for the weak solutions and strong solutions to both problems are derived.

Article information

Source
Taiwanese J. Math., Volume 14, Number 2 (2010), 707-718.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500405815

Digital Object Identifier
doi:10.11650/twjm/1500405815

Mathematical Reviews number (MathSciNet)
MR2655795

Zentralblatt MATH identifier
1250.90086

Subjects
Primary: 90C33: Complementarity and equilibrium problems and variational inequalities (finite dimensions) 49J40: Variational methods including variational inequalities [See also 47J20]

Keywords
$F$-implicit generalized vector variational inequalities weak solutions strong solutions

Citation

Lin, Yen-Cherng; Wong, Mu-Ming. NOTE ON F-IMPLICIT GENERALIZED VECTOR VARIATIONAL INEQUALITIES. Taiwanese J. Math. 14 (2010), no. 2, 707--718. doi:10.11650/twjm/1500405815. https://projecteuclid.org/euclid.twjm/1500405815


Export citation

References

  • \item[1.] K. Fan, A generalization of Tychonoff's fixed point theorem, Mathematische Annalen, 142 (1961), 305-310.
  • \item[2.] F. Ferro, A minimax theorem for vector-valued functions, J. Opti. Theory Appl., 60 (1989), 19-31.
  • \item[3.] L. C. Zeng, Y. C. Lin and J. C. Yao, On weak and strong solutions of $F$-implicit generalized variational inequalities with applications, Appl. Math. Let., 19 (2006), 684-689.
  • \item[4.] L. J. Lin and Z. T. Yu, On some equilibrium problems for multimaps, J. Comput. Appl. Math., 129 (2001), 171-183.
  • \item[5.] Y. C. Lin, On $F$-implicit generalized vector variational inequalities, J. Opti. Theory Appl., (2009), to appear.
  • \item[6.] J. Li and N.J. Huang, Vector $F$-implicit complementarity problems in Banach spaces, Appl. Math. Let., 19 (2006), 464-471.
  • \item[7.] L. C. Zeng, S. Y. Wu and J. C. Yao, Generalized KKM Theorem with Applications to Generalized Minimax Inequalities and Generalized Equilibrium Problems, Taiwanese J. Math., 10 (2006), 1497-1514.
  • \item[8.] L. C. Zeng and J. C. Yao, Existence of Solutions of Generalized Vector Variational Inequalities in Reflexive Banach Spaces, J. Global Opti., 36 (2006), 483-497.
  • \item[9.] L. C. Zeng and J. C. Yao, Strong Convergence Theorem by an Extragradient Method for Fixed Point problems and Variational Inequality Problems, Taiwanese J. Math., 10 (2006), 1293-1303.
  • \item[10.] S. Schaible, J. C. Yao and L. C. Zeng, A Proximal Method for Pseudomonotone Type Variational-Like Inequalities, Taiwanese J. Math., 10 (2006), 497-513.
  • \item[11.] L. C. Zeng, L. J. Lin and J. C. Yao, Auxiliary Problem Method for Mixed Variational-Like Inequalities, Taiwanese J. Math., 10 (2006), 515-529.
  • \item[12.] L. C. Ceng, C. Lee and J. C. Yao, Strong Weak Convergence Theorems of Implicit Hybrid Steepest-Descent Methods for Variational Inequalities, Taiwanese J. Math., 12 (2008), 227-244.
  • \item[13.] L. C. Ceng and J. C. Yao, Approximate proximal methods in vector optimization, Eur. J. Oper. Res., 183 (2007), 1-19. \item[14.] L. C. Ceng and J. C. Yao, Approximate Proximal Algorithms for Generalized Variational Inequalities with Pseudomonotone Multifunctions, J. Comput. Appl. Math., 213 (2008), 423-438.
  • \item[15.] B. T. Kien, N. C. Wong and J. C. Yao, Generalized Vector Variational Inequalities with Star-Pseudomonotone and Discontinuous Operators, Nonlinear Anal. Ser. A: Theory, Methods Appl., 68 (2008), 2859-2871.
  • \item[16.] Yakov I. Alber and Jen-Chih Yao, On the projection dynamical systems in Banach spaces, Taiwanese J. Math., 11 (2007), 819-848.
  • \item[17.] K. Kimura and J. C. Yao, Sensitivity analysis of solution mappings of parametric generalized quasi vector equilibrium problems, Taiwanese J. Math., 12 (2008), 2233-2268.
  • \item[18.] L. C. Ceng, S. Schaible and J. C. Yao, Existence of Solutions for Generalized Vector Variational-like Inequalities, J. Opti. Theory Appl., 137 (2008), 121-133.
  • \item[19.] L. C. Ceng, P. Cubiotti and J. C. Yao, An Implicit Iterative Scheme for Monotone Variational Inequalities and Fixed Point Problems, Nonlinear Anal. Ser. A: Theory, Methods Appl., 69 (2008), 2445-2457.
  • \item[20.] L. C. Ceng, G. Mastroeni and J. C. Yao, Existence of Solutions and Variational Principles for Generalized Vector Systems, J. Opti. Theory and Appl., 137 (2008), 485-496.
  • \item[21.] L. C. Ceng and J. C. Yao, Relaxed Viscosity Approximation Methods for Fixed Point Problems and Variational Inequality Problems, Nonlinear Anal. Ser. A: Theory, Methods Appl., 69 (2008), 3299-3309.
  • \item[21.] L. C. Ceng and J. C. Yao, Mixed Projection Methods for Systems of Variational Inequalities, J. Global Opti., 41 (2008), 465-478.
  • \item[22.] L. C. Ceng and J. C. Yao, Well-posedness of generalized mixed variational inequalities, inclusion problems and fixed point problems, Nonlinear Anal. Ser. A: Theory, Methods Appl., 69 (2008), 4585-4603.
  • \item[23.] B. T. Kien, M. M. Wong, N. C. Wong and J. C. Yao, Degree theory for generalized variational inequalities and applications, Eur. J. Oper. Res., 192 (2009), 730-736.
  • \item[24.] L. C. Ceng, G. Y. Chen, X. X. Huang and J. C. Yao, Existence Theorems for Generalized Vector Variational Inequalities with Pseudomonotonicity and Their Applications, Taiwanese J. Math., 12 (2008), 151-172. \item[25.] L. C. Zeng and J. C. Yao, A Hybrid Extragradient Method for General Variational Inequalities, Math. Methods Oper. Res., 69 (2009), 141-158.
  • \item[26.] B. T. Kien, M. M. Wong, N. C. Wong and J. C. Yao, Solution existence of variational inequalities with pseudomonotone operators in the sense of Brézis, J. Opti. Theory Appl., 140 (2009), 249-263. \item[27.] L. C. Ceng, Q. H. Ansari and J. C. Yao, Mann type steepest-descent and modified hybrid steepest-descent methods for variational inequalities in Banach spaces, Numerical Funct. Anal. Opti., 29(9-10) (2008), 987-1033. \item[28.] J. W. Peng and J. C. Yao, A new hybrid-extragradient method for generalized mixed equilibrium problems and fixed point problems and variational inequality problems, Taiwanese J. Math., 12 (2008), 1401-1433.
  • \item[29.] J. W. Peng and J. C. Yao, Some new iterative algorithms for generalized mixed equilibrium problems with strict pseudo-contractions and monotone mappings, Taiwanese J. Math, (2009), to appear.