Taiwanese Journal of Mathematics

INVARIANT MEAN AND SOME CORE THEOREMS FOR DOUBLE SEQUENCES

M. Mursaleen and S. A. Mohiuddine

Full-text: Open access

Abstract

In this paper we define and characterize the class $(V_{2}^{\sigma},V_{2}^{\sigma})$ and establish a core theorem, where $V_{2}^{\sigma}$ is the space of $\sigma$-convergent double sequences $x = (x_{jk})$. We further determine a Tauberian condition for core inclusion and core equivalence.

Article information

Source
Taiwanese J. Math., Volume 14, Number 1 (2010), 21-33.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500405725

Digital Object Identifier
doi:10.11650/twjm/1500405725

Mathematical Reviews number (MathSciNet)
MR2603440

Zentralblatt MATH identifier
1209.40003

Subjects
Primary: 40C05: Matrix methods 40H05: Functional analytic methods in summability

Keywords
double sequences $p$-convergence invariant mean $\sigma$-convergence $\sigma$-core core theorems

Citation

Mursaleen, M.; Mohiuddine, S. A. INVARIANT MEAN AND SOME CORE THEOREMS FOR DOUBLE SEQUENCES. Taiwanese J. Math. 14 (2010), no. 1, 21--33. doi:10.11650/twjm/1500405725. https://projecteuclid.org/euclid.twjm/1500405725


Export citation

References

  • [1.] B. Altay and F. Başar, Some new spaces of double sequences, J. Math. Anal. Appl., 309 (2005), 70-90.
  • [2.] C. Çakan, B. Altay and Mursaleen, The $\sigma$-convergence and $\sigma$-core of double sequences, Appl. Math. Lett., 19 (2006), 1122-1128.
  • [3.] H. J. Hamilton, Transformations of multiple sequences, Duke Math. J., 2 (1936), 29-60.
  • [4.] G. G. Lorentz, A contribution to theory of divergent sequences, Acta Math., 80 (1948), 167-190.
  • [5.] S. L. Mishra, B. Satapathy and N. Rath, Invariant mean and $\sigma$-core, J. Indian Math. Soc., 60 (1994), 151-158.
  • [6.] F. Moricz and B. E. Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc., 104 (1988), 283-294.
  • [7.] Mursaleen and Osama H. H. Edely, Almost convergence and a core theorem for double sequences, J. Math. Anal. Appl., 293 (2004), 532-540.
  • [8.] Mursaleen and E. Savaş, Almost regular matrices for double sequences, Studia Sci. Math. Hung., 40 (2003), 205-212.
  • [9.] Mursaleen and S. A. Mohiuddine, Double $\sigma$-multiplicative matrices, J. Math. Anal. Appl., 327 (2007), 991-996.
  • [10.] Mursaleen, On some new invariant matrix methods of summability, Quart. J. Math. Oxford, 34 (1983), 77-86.
  • [11.] Mursaleen, Almost strongly regular matrices and a core theorem for double sequences, J. Math. Anal. Appl., 293 (2004), 523-531.
  • [12.] R. F. Patterson, Double sequence core theorems, Internat. J. Math. Math. Sci., 22 (1999), 785-793.
  • [13.] R. F. Patterson, Comparison theorems for four dimensional regular matrices, Southeast Asian Bull. Math., 26 (2002), 299-305.
  • [14.] A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Z., 53 (1900), 289-321.
  • [15.] G. M. Robinson, Divergent double sequences and series, Trans. Amer. Math. Soc., 28 (1926), 50-73.
  • [16.] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36 (1972), 104-110.
  • [17.] M. Zeltser, Matrix transformations of double sequences, Acta Comment. Univ. Tartu Math., 4 (2000), 39-51.