Taiwanese Journal of Mathematics


Alexander J. Zaslavski

Full-text: Open access


In this paper we use the penalty approach in order to study inequality-constrained minimization problems with locally Lipschitz objective and constraint functions in Banach spaces. A penalty function is said to have the generalized exact penalty property if there is a penalty coefficient for which approximate solutions of the unconstrained penalized problem are close enough to approximate solutions of the corresponding constrained problem. In this paper we show that the generalized exact penalty property is stable under perturbations of objective functions, constraint functions and the right-hand side of constraints.

Article information

Taiwanese J. Math., Volume 14, Number 1 (2010), 1-19.

First available in Project Euclid: 18 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 49M30: Other methods 90C26: Nonconvex programming, global optimization 90C30: Nonlinear programming

Clarke's generalized gradient Ekeland's variational principle minimization problem penalty function


Zaslavski, Alexander J. STABILITY OF EXACT PENALTY FOR NONCONVEX INEQUALITY-CONSTRAINED MINIMIZATION PROBLEMS. Taiwanese J. Math. 14 (2010), no. 1, 1--19. doi:10.11650/twjm/1500405724. https://projecteuclid.org/euclid.twjm/1500405724

Export citation


  • [1.] T. Q. Bao and B. S. Mordukhovich, Variational principles for set-valued mappings with applications to multiobjective optimization, Control and Cybernetics, 36 (2007).
  • [2.] D. Boukari and A. V. Fiacco, Survey of penalty, exact-penalty and multiplier methods from 1968 to 1993 Optimization, 32 (1995), 301-334.
  • [3.] J. V. Burke, An exact penalization viewpoint of constrained optimization, SIAM J. Control Optim., 29 (1991), 968-998.
  • [4.] F. H. Clarke, Optimization and Nonsmooth Analysis, Willey Interscience, 1983.
  • [5.] G. Di Pillo and L. Grippo, Exact penalty functions in constrained optimization, SIAM J. Control Optim., 27 (1989), 1333-1360.
  • [6.] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353.
  • [7.] I. I. Eremin, The penalty method in convex programming, Soviet Math. Dokl., 8 (1966), 459-462.
  • [8.] S.-P. Han and O. L. Mangasarian, Exact penalty function in nonlinear programming, Math. Programming, 17 (1979), 251-269.
  • [9.] J.-B. Hiriart-Urruty and C. Lemarechal, Convex Analysis and Minimization Algorithms, Springer, Berlin, 1993.
  • [10.] D. G. Luenberger, Control problems with kinks, IEEE Trans. Automat. Control, 15 (1970), 570-575.
  • [11.] B. S. Mordukhovich, Penalty functions and necessary conditions for the extremum in nonsmooth and nonconvex optimization problems, Uspekhi Math. Nauk, 36 (1981), 215-216.
  • [12.] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory, II: Applications, Springer, Berlin, 2006.
  • [13.] J. Outrata, A note on the usage of nondifferentiable exact penalties in some special optimization problems, Kybernetika, 24 (1988), 251-258.
  • [14.] R. Palais, Lusternik-Schnirelman theory of Banach manifolds, Topology, 5 (1966), 115-132.
  • [15.] R. T. Rockafellar, Penalty methods and augmented Lagrangians in nonlinear programming, Fifth Conference on Optimization Techniques (Rome, 1973), Part I. Lecture Notes in Comput. Sci., Springer, Berlin, 3 (1973), 418-425.
  • [16.] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer, Berlin, 1998.
  • [17.] W. I. Zangwill, Nonlinear programming via penalty functions, Management Sci., 13 (1967), 344-358.
  • [18.] A. J. Zaslavski, On critical points of Lipschitz functions on smooth manifolds, Siberian Math. J., 22 (1981), 63-68.
  • [19.] A. J. Zaslavski, A sufficient condition for exact penalty in constrained optimization, SIAM Journal on Optimization, 16 (2005), 250-262.
  • [20.] A. J. Zaslavski, Existence of exact penalty for optimization problems with mixed constraints in Banach spaces, J. Math. Anal. Appl., 324 (2006), 669-681.
  • [21.] A. J. Zaslavski, Existence of exact penalty and its stability for nonconvex constrained optimization problems in Banach spaces, Set-Valued Analysis, in press.