Taiwanese Journal of Mathematics


A. Azizi

Full-text: Open access


Prime submodules and weakly prime submodules of Artinian modules are characterized. Furthermore, some previous results on prime modules are generalized.

Article information

Taiwanese J. Math., Volume 13, Number 6B (2009), 2011-2020.

First available in Project Euclid: 18 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 13C99: None of the above, but in this section 13C13: Other special types 13E05: Noetherian rings and modules 13F05: Dedekind, Prüfer, Krull and Mori rings and their generalizations 13F15: Rings defined by factorization properties (e.g., atomic, factorial, half- factorial) [See also 13A05, 14M05]

catenary modules dimension of modules multiplication modules prime submodules reduced dimension of modules weakly prime submodules


Azizi, A. PRIME SUBMODULES OF ARTINIAN MODULES. Taiwanese J. Math. 13 (2009), no. 6B, 2011--2020. doi:10.11650/twjm/1500405654. https://projecteuclid.org/euclid.twjm/1500405654

Export citation


  • A. Azizi, Intersectin of prime submodules and dimension of modules, Acta Math. Scientia, 25B(3) (2005), 385-394.
  • A. Azizi, On prime and weakly prime submodules, Vietnam J. Math., 36(3) (2008), 315-325.
  • A. Azizi, Prime submodules and flat modules, Acta Math. Sinica, English Series, 23(1) (2007), 147-152.
  • A. Azizi, Principal ideal multiplication modules, Algebra Colloquium., 15(4) (2008), 637-648.
  • A. Azizi, Radical formula and prime submodules, Journal of Algebra, 307 (2007), 454-460.
  • A. Azizi, Weak multiplication modules, Czech Mathematical Journal, 53(128) (2003), 529-534.
  • A. Azizi, Weakly prime submodules and prime submodules, Glasgow Mathematical Journal, 48(2) (2006), 343-346.
  • A. Azizi and H. Sharif, On prime submodules, Honam Mathematical Journal, 21(1) (1999), 1-12.
  • A. Barnard, Multiplication modules, Journal of Algebra, 71 (1981), 174-178.
  • M. Behboodi and H. Koohi, Weakly prime submodules, Vietnam Journal of Math., 32(2) (2004), 185-195.
  • A. M. George, R. L. McCasland and P. F. Smith, A principal ideal theorem analogue for modules over commutative rings, Comm. Algebra, 22 (1994), 2083-2099.
  • T. W. Hungerford, Algebra, Springer-Verlog, New York Inc., 1989.
  • C. P. Lu, Spectra of modules, Comm. Algebra, 23(10) (1995), 3741-3752.
  • R. L. McCasland and M. E. Moore, Prime submodules, Comm. Algebra, 20(6) (1992), 1803-1817.
  • H. Matsumura, Commutative ring theory, Cambridge University Press, Cambridge, 1992.
  • S. Namazi and Y. Sharifi, Catenary modules, Acta Math. Hungarica, 85(3) (1999), 211-218.
  • Y. Tiras and M. Alkan, Prime modules and submodules, Comm. Algebra, 31(11) (2003), 5253-5261.