Taiwanese Journal of Mathematics


L. C. Ceng and N. C. Wong

Full-text: Open access


The purpose of this paper is to suggest and analyze a new iterative scheme by the viscosity approximation method for finding a common element of the set of solutions of an equilibrium problem and the set of common fixed points of a commutative family of nonexpansive mappings in a Hilbert space. Then we prove a strong convergence theorem which is connected with the results of Takahashi and Takahashi [13] and Yao and Noor [147]. Using this result, we obtain two corollaries which improve and extend their results.

Article information

Taiwanese J. Math., Volume 13, Number 5 (2009), 1497-1513.

First available in Project Euclid: 18 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 49J40: Variational methods including variational inequalities [See also 47J20] 90C29: Multi-objective and goal programming 47H10: Fixed-point theorems [See also 37C25, 54H25, 55M20, 58C30] 47H17

viscosity approximation method equilibrium problem common fixed point nonexpansive mapping strong convergence uniformly asymptotic regularity


Ceng, L. C.; Wong, N. C. VISCOSITY APPROXIMATION METHODS FOR EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS OF NONLINEAR SEMIGROUPS. Taiwanese J. Math. 13 (2009), no. 5, 1497--1513. doi:10.11650/twjm/1500405556. https://projecteuclid.org/euclid.twjm/1500405556

Export citation


  • [1.] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 123-145.
  • [2.] P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6 (2005), 117-136.
  • [3.] S. D. Flam and A. S. Antipin, Equilibrium programming using proximal-like algorithms, Math. Program., 78 (1997), 29-41.
  • [4.] A. Moudafi, Viscosity approximation methods for fixed-point problems, J. Math. Anal. Appl., 241 (2000), 46-55.
  • [5.] Z. Opial, Weak convergence of the sequence of successive approximation for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 561-597.
  • [6.] N. Shioji and W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc., 125 (1997), 3641-3645.
  • [7.] A. Tada and W. Takahashi, Strong convergence theorem for an equilibrium problem and a nonexpansive mapping, in: W. Takahashi, T. Tanaka (Eds.), Nonlinear Analysis and Convex Analysis, Yokohama Publishers, Yokohama, 2006, in press.
  • [8.] H. K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., 298 (2004), 279-291.
  • [9.] T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl., 305 (2005), 227-239.
  • [10.]L. C. Ceng and J. C. Yao, A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math., (2007), doi:10.1016/j.cam.2007.02. 022.
  • [11.]R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math., 58 (1992), 486-491.
  • [12.]K. Geobel and W. A. Kirk, Topics on Metric Fixed-Point Theory, Cambridge University Press, Cambridge, England, 1990.
  • [13.]S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., (2006), doi:10.1016/j.jmaa.2006.08.036.
  • [14.]Y. Yao and M. A. Noor, On viscosity iterative methods for variational inequalities, J. Math. Anal. Appl., 325 (2007), 776-787.