Taiwanese Journal of Mathematics

SIMULTANEOUS METRIC PROJECTIONS IN C(Q, Y ) WITH APPLICATIONS

M. Iranmanesh and H. Mohebi

Full-text: Open access

Abstract

We develop a theory of simultaneous metric projection in a normed linear space $X$ and present various characterizations of simultaneous metric projection onto closed convex sets in terms of the elements of $X^{\ast}$. Also, we characterize the elements of simultaneous metric projection onto closed convex sets in terms of extreme points of the closed unit ball $B_{X^{\ast}}.$ Finally, as an application, we give various characterizations of simultaneous metric projection onto subspaces of the Banach space $C(Q,Y).$

Article information

Source
Taiwanese J. Math., Volume 13, Number 5 (2009), 1411-1432.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500405549

Digital Object Identifier
doi:10.11650/twjm/1500405549

Mathematical Reviews number (MathSciNet)
MR2554466

Zentralblatt MATH identifier
1182.41013

Subjects
Primary: 41A28: Simultaneous approximation 46B25: Classical Banach spaces in the general theory 46E15: Banach spaces of continuous, differentiable or analytic functions

Keywords
simultaneous metric projection extreme point totaly bounded set normed linear space

Citation

Iranmanesh, M.; Mohebi, H. SIMULTANEOUS METRIC PROJECTIONS IN C(Q, Y ) WITH APPLICATIONS. Taiwanese J. Math. 13 (2009), no. 5, 1411--1432. doi:10.11650/twjm/1500405549. https://projecteuclid.org/euclid.twjm/1500405549


Export citation

References

  • L. Chong and G. A. Watson, On best simultaneous approximation, J. Approx. Theory, 91 (1997), 332-348.
  • Boris S. Mordukhovich, Variational analysis and generalized differentiation I & II, Springer-Verlag Berlin Heidelberg, 2006.
  • J. B. Dias and H. W. Mclaughlin, Simultaneous approximation of a set of bounded functions, Math. Comp., 23 (1969), 583-594.
  • N. Dunford and J. T. Schwartz, Linear operators, Part I: General Theory, Interscience Publishers, Inc., New York, 1958. MR 22:8302.
  • G. Gierz, K. H. Hoffman, K. Keimel, J. D. Lawson and D. S. Scott, Continuous lattices and domains, Cambridge University Press, 2003.
  • M. Iranmanesh and H. Mohebi, Best simultaneous approximation in Tensor product Spaces, Journal of Applied Mathematical Sciences, 1(18) (2007), 883-894.
  • W. A. Light and E. W. Cheney, Approximation theory in Tensor product spaces, Lecture Notes in Mathematics, vol. 1169, Springer-Verlag, New York/Berlin, 1985.
  • J. Mach, Best simultaneous approximation of bounded functions with values in certain Banach space, Math. Ann., 240 (1979), 157-164.
  • P. D. Milman, On best simultaneous approximations in normed linear spaces, J. Approx. Theory, 20 (1977), 223-238.
  • H. Mohebi, Downward sets and their best simultaneous approximation properties with applications, Numerical Functional Analysis and optimization, 25(7 & 8) (2004), 685-705.
  • H. Mohebi and E. Naraghirad, Closed convex sets and their best simultaneous approximation properties with applications, Journal of Optimization Letters, 1 (2006), 1-16.
  • W. Rudin, Real And Complex Analysis, McGraw-Hill, Inc., 1987.
  • B. N. Sahney and S. P. Singh, On best simultaneous approximation in Banach spaces, J. Approx. Theory, 35 (1982), 222-224.
  • F. Saidi, Deeb Hussein and R. Khalil, Best simultaneous approximation in $L^{p}(I,E)$, J. Approx. Theory, 116 (2002), 369-379.
  • I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Springer-Verlag, New York/ Berlin, 1970.
  • S. Tanimoto, On best simultaneous approximation, Math. Japonica, 48 (1998), 275-279.
  • S. Tanimoto, A characterization of best simultaneous approximations, J. Approx. Theory, 59 (1989), 359-361.
  • B. Z. Vulikh, Introduction to the theory of partially ordered vector spaces, Wolters-Noordhoff, Groningen, 1967.
  • G. A. Watson, A characterization of best simultaneous approximations, J. Approx. Theory, 75 (1993), 175-182.