Taiwanese Journal of Mathematics

THE C∗-ALGEBRAS OF SOME SOLVABLE LIE GROUPS INVOLVING CYCLIC SYMMETRIES

Takahiro Sudo

Full-text: Open access

Abstract

In this paper we consider the group $C^*$-algebras of some solvable Lie groups involving cyclic symmetries and obtain some results on their %algebraic structure, stable rank, and connected stable rank for $C^*$-algebras.

Article information

Source
Taiwanese J. Math., Volume 13, Number 4 (2009), 1305-1330.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500405510

Digital Object Identifier
doi:10.11650/twjm/1500405510

Mathematical Reviews number (MathSciNet)
MR2543745

Zentralblatt MATH identifier
1186.46060

Subjects
Primary: 46L05: General theory of $C^*$-algebras
Secondary: 22D25: $C^*$-algebras and $W^*$-algebras in relation to group representations [See also 46Lxx]

Keywords
group $C^*$-algebras symmetry stable rank

Citation

Sudo, Takahiro. THE C∗-ALGEBRAS OF SOME SOLVABLE LIE GROUPS INVOLVING CYCLIC SYMMETRIES. Taiwanese J. Math. 13 (2009), no. 4, 1305--1330. doi:10.11650/twjm/1500405510. https://projecteuclid.org/euclid.twjm/1500405510


Export citation

References

  • B. Blackadar, K-theory for Operator Algebras, Second Edition, Cambridge, (1998).
  • B. Blackadar, Symmetries of the CAR algebra, Ann. of Math., 131 (1990), 589-623.
  • O. Bratteli, G. Elliott, D. Evans and A. Kishimoto, Non-commutative spheres I, Internat. J. Math., 2 (1991), 139-166.
  • O. Bratteli, G. Elliott, D. Evans and A. Kishimoto, Non-commutative spheres II: Rational rotations, J. Operator Theory, 27 (1992), 53-85.
  • O. Bratteli and A. Kishimoto, Non-commutative spheres III. Irrational rotations, Commun. Math. Phys., 147 (1992), 605-624.
  • J. Dixmier, $C^*$-algebras, North-Holland (1962).
  • G. A. Elliott and D. E. Evans, The structure of irrational rotation $C^*$-algebras, Ann. of Math., 138 (1993), 477-501.
  • G. A. Elliott and Q. Lin, Cut-down method in the inductive limit decomposition of noncommutative tori, II: The degenerate case, Operator Algebras and Their Applications, Fields Ints. Commun., 13 (1997), 91-123.
  • P. Green, The structure of imprimitivity algebras, J. Funct. Anal., 36 (1980), 88-104.
  • M. Nagisa, H. Osaka and N. C. Phillips, Ranks of algebras of continuous $C^*$-algebra valued functions, Canad. J. Math., 53 (2001), 979-1030.
  • V. Nistor, Stable range for tensor products of extensions of $\frak K$ by $C(X)$, J. Operator Theory, 16 (1986), 387 396.
  • G. K. Pedersen, $C^*$-Algebras and their Automorphism Groups, Academic Press (1979).
  • D. Poguntke, Simple quotients of group $C^*$-algebras for two step nilpotent groups and connected Lie groups, Ann. Scient. Éc. Norm. Sup., 16 (1983), 151-172.
  • M. A. Rieffel, Dimension and stable rank in the K-theory of $C^*$-algebras, Proc. London Math. Soc., 46 (1983), 301-333.
  • M. A. Rieffel, The homotopy groups of the unitary groups of non-commutative tori, J. Operator Theory, 17 (1987), 237-254.
  • M. A. Rieffel, Projective modules over higher-dimensional non-commutative tori, Canad. J. Math., XL (40) (1988), 257-338.
  • M. Rørdam and E. Størmer, Classification of Nuclear $C^*$-Algebras. Entropy in Operator Algebras, EMS 126, Operator Algebras and Non-Commutative Geometry VII, Springer (2002).
  • A. J-L. Sheu, A cancellation theorem for projective modules over the group $C^*$-algebras of certain nilpotent Lie groups, Canad. J. Math., 39 (1987), 365-427.
  • T. Sudo, Dimension theory of group $C^*$-algebras of connected Lie groups of type I, J. Math. Soc. Japan, 52 (2000), 583-590.
  • T. Sudo, Structure of group $C^*$-algebras of Lie semi-direct products $\Bbb C^n\rtimes \Bbb R$, J. Operator Theory, 46 (2001), 25-38.
  • T. Sudo, The structure of group $C^*$-algebras of the generalized Dixmier groups, Publ. Res. Inst. Math. Sci. Kyoto Univ., 39 (2003), 205-225.
  • T. Sudo, Structure of group $C^*$-algebras of the generalized Mautner groups, J. Math. Kyoto Univ., 42 (2002), 393-402.
  • T. Sudo, Structure of group $C^*$-algebras of semi-direct products $\Bbb C^n$ by $\Bbb Z$, Nihonkai Math. J., 12(2) (2001), 135-143.
  • T. Sudo, Structure of group $C^*$-algebras of the generalized disconnected Dixmier groups, Sci. Math. Jpn., 54(3) (2001), 449-454, :e4, 861-866.
  • T. Sudo, Structure of group $C^*$-algebras of the generalized disconnected Mautner groups, Linear Algebra Appl., 341 (2002), 317-326.
  • T. Sudo and H. Takai, Stable rank of the $C^*$-algebras of nilpotent Lie groups, Internat. J. Math., 6 (1995), 439-446.
  • T. Sudo and H. Takai, Stable rank of the $C^*$-algebras of solvable Lie groups of type I, J. Operator Theory, 38 (1997), 67-86.