Taiwanese Journal of Mathematics

CONVERGENCE OF THE g-NAVIER-STOKES EQUATIONS

Jaiok Roh

Full-text: Open access

Abstract

The 2D $g$-Navier-Stokes equations have the following form, $$ \frac{\partial \mathbf u}{\partial t}-\nu\Delta { \mathbf u} + ( \mathbf u \cdot\nabla)\mathbf u +\nabla p = {\bf f}, \ \ \mbox{in} \ \Omega $$ with the continuity equation $$ \nabla\cdot (g {\mathbf u})= 0, \ \ \mbox{in} \ \Omega, $$ where $g$ is a smooth real valued function. We get the Navier-Stokes equations, for $g$ = $1$. In this paper, we investigate solutions $\{\mathbf u_g, p_g\}$ of the $g$-Navier-Stokes equations, as $g \to 1$ in some suitable spaces.

Article information

Source
Taiwanese J. Math., Volume 13, Number 1 (2009), 189-210.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500405278

Digital Object Identifier
doi:10.11650/twjm/1500405278

Mathematical Reviews number (MathSciNet)
MR2489313

Zentralblatt MATH identifier
1179.35224

Subjects
Primary: 34C35 35Q30: Navier-Stokes equations [See also 76D05, 76D07, 76N10] 76D05: Navier-Stokes equations [See also 35Q30]
Secondary: 35K55: Nonlinear parabolic equations

Keywords
$g$-Navier-Stokes equation weak solution strong solution convergence

Citation

Roh, Jaiok. CONVERGENCE OF THE g-NAVIER-STOKES EQUATIONS. Taiwanese J. Math. 13 (2009), no. 1, 189--210. doi:10.11650/twjm/1500405278. https://projecteuclid.org/euclid.twjm/1500405278


Export citation

References

  • P. Constantin and C. Foias, NavierStokes equations, Chicago Lectures in Mathematics, The University of Chiago Press, 1988.
  • R. Courant and D. Hilbert, Methods of Mathematical Physics Vol. 1, Interscience Publ., New York 1989.
  • C. Foias and R. Temam, Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations, J. Math. Pures et Appl., 58 (1979), 334-368.
  • O. Ladyzhenskaya, On the dynamical system generated by the navier-Stokes equations, Zapiskii of nauchnish seminarovs LOMI, 27 (1972), 91-114; English tranlation in J. of Soviet Math., 3 (1975).
  • J. Roh, $g$-NavierStokes equations, Thesis, University of Minnesota, 2001.
  • J. Roh, Dynamics of the $g$-Navier-Stokes equations, J. Differential equations, 211 (2005), 452-484.
  • H. Bae and J. Roh, Existence of solutions of the $g$-Navier-Stokes equations, Taiwanese Journal of Mathematics, 8(1) (2004), 85-102.
  • H. Kwean and J. Roh, The global attractor of the 2D $g$-Navier-Stokes equations on some unbounded domains, Commun. Korean Math. Soc., 20(4) (2005), 731-749.
  • M. Kwak, H. Kwean and J. Roh, The dimension of attractor of the 2D $g$-Navier-Stokes equations, Journal of Mathematical Analysis and Applications, 315 (2006), 436-461.
  • G. R. Sell and Y. You, Dynamics of evolutionary equations, Applied Mathematical Sciences, 143. Springer-Verlag, New York, 2002.
  • R. Temam, NavierStokes equations: theory and numerical analysis, 1977.
  • R. Temam, NavierStokes equations and Nonlinear functional analysis, 1983.