Taiwanese Journal of Mathematics

A COMPARISON OF THE ORDER COMPONENTS IN FROBENIUS AND 2-FROBENIUS GROUPS WITH FINITE SIMPLE GROUPS

A. R. Moghaddamfar

Full-text: Open access

Abstract

Let $G$ be a finite group. Based on the Gruenberg-Kegel graph ${\rm GK}(G)$, the order of $G$ can be divided into a product of coprime positive integers. These integers are called the order components of $G$ and the set of order components is denoted by ${\rm OC}(G)$. In this article we prove that, if $S$ is a non-Abelian finite simple group with a disconnected graph ${\rm GK}(S)$, with an exception of $U_4(2)$ and $U_5(2)$, and $G$ is a finite group with ${\rm OC}(G)={\rm OC}(S)$, then $G$ is neither Frobenius nor $2$-Frobenius. For a group $S$ isomorphic to $U_4(2)$ or $U_5(2)$, we construct examples of $2$-Frobenius groups $G$ such that ${\rm OC}(S)={\rm OC}(G)$. In particular, the simple groups $U_4(2)$ and $U_5(2)$ are not recognizable by their order components.

Article information

Source
Taiwanese J. Math., Volume 13, Number 1 (2009), 67-89.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500405273

Digital Object Identifier
doi:10.11650/twjm/1500405273

Mathematical Reviews number (MathSciNet)
MR2489308

Zentralblatt MATH identifier
1230.20013

Subjects
Primary: 20D05: Finite simple groups and their classification

Keywords
Frobenius group $2$-Frobenius group Gruenberg-Kegel graph order component

Citation

Moghaddamfar, A. R. A COMPARISON OF THE ORDER COMPONENTS IN FROBENIUS AND 2-FROBENIUS GROUPS WITH FINITE SIMPLE GROUPS. Taiwanese J. Math. 13 (2009), no. 1, 67--89. doi:10.11650/twjm/1500405273. https://projecteuclid.org/euclid.twjm/1500405273


Export citation

References

  • M. R. Aleeva. On finite simple groups with the set of element orders as in a Frobenius group or a double Frobenius group. Mathematical Notes, 73(3) (2003), 299-313.
  • R. Brandl and W. J. Shi. The characterization of $PSL(2,q)$ by its element orders. J. Algebra, 163(1) (1994), 109-114.
  • G. Y. Chen. A new characterization of sporadic simple groups. Algebra Colloq., 3(1) (1996), 49-58.
  • G. Y. Chen. A new characterization of Suzuki-Ree groups. Sci. in Chinese $($Ser. A$)$ 27(5) (1997), 430-433.
  • G. Y. Chen. A new characterization of $PSL(2,q)$. Southeast Asian Bull. Math., 22 (1998), 257-263.
  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson. Atlas of Finite Groups, Oxford, Clarendon Press, 1985.
  • D. Gorenstein. Finite Groups, Harper and Row, New York, 1968.
  • A. Iranmanesh and B. Khosravi. A characterization of ${\rm PSU}\sb 5(q)$. Int. Math. J., 3(2) (2003), 129-141.
  • A. S. Kondrat'ev and V. D. Mazurov. Recognition of alternating groups of prime degree from their element orders. Siberian Math. J., 41(2) (2000), 294-302.
  • V. D. Mazurov. Recognition of the finite simple groups $S_4(q)$ by their element orders. Algebra and Logic, 36(1) (1997, 36-53.
  • T. G. Thompson. Normal $p$-complements for finite groups. Math. Z., 72(2) (1960), 332-354.
  • J. S. Williams. Prime graph components of finite groups. J. Algebra, 69(2) (1981), 487-513.
  • H. Zassenhaus. Kennzeichnung endlicher linearen Gruppen als Permutationsgruppen. Abh. Math. Sem. Univ. Hamburg, 11 (1936), 17-40.
  • H. Zassenhaus. Über endliche Fastkörper. Abh. Math. Sem. Univ. Hamburg, 11 (1936), 187-220.
  • K. Zsigmondy. Zur Theorie der Potenzreste. Monatsh, Mat. Phys., 3 (1892) 265-284.