Open Access
2009 STABILITY OF IMPLICIT MULTIFUNCTIONS IN ASPLUND SPACES
N. Q. Huy, J.-C. Yao
Taiwanese J. Math. 13(1): 47-65 (2009). DOI: 10.11650/twjm/1500405272

Abstract

The purpose of this paper is to present new sufficient conditions for both the metric regularity and the Lipschitzian stability of implicit multifunctions in Asplund spaces. The basic tools of our analysis involve the Fr´echet normal coderivative and the Mordukhovich normal coderivative of set-valued mappings, the basic subgradient estimate for marginal functions and the Ekeland variational principle. Applications to the pointbased characterizations for the metric regularity and the Lipschitzian stability of solution mapping of parametric generalized equations are given.

Citation

Download Citation

N. Q. Huy. J.-C. Yao. "STABILITY OF IMPLICIT MULTIFUNCTIONS IN ASPLUND SPACES." Taiwanese J. Math. 13 (1) 47 - 65, 2009. https://doi.org/10.11650/twjm/1500405272

Information

Published: 2009
First available in Project Euclid: 18 July 2017

zbMATH: 1169.49012
MathSciNet: MR2489307
Digital Object Identifier: 10.11650/twjm/1500405272

Subjects:
Primary: 49J52 , 49J53 , 90C31

Keywords: Ekeland variational principle , Fréchet coderivative , implicit multifunction , Lipschitzian stability in Aubin's sense , metric regularity in Robinson's sense , Mordukhovich normal coderivative

Rights: Copyright © 2009 The Mathematical Society of the Republic of China

Vol.13 • No. 1 • 2009
Back to Top