Taiwanese Journal of Mathematics

OPTIMAL ADJUSTMENT OF COMPETENCE SET WITH LINEAR PROGRAMMING

Tsung-Chih Lai Lai, Chieh-Yow Chianglin, and Po-Lung Yu

Full-text: Open access

Abstract

Management by objectives (MBO) is an effective way for enterprise management. By setting the targets of the productivity the companies try their best, including adjustment of resource allocation and competence, to reach the targets. Within the same framework of productivity and of resources the targets may not be attainable. However, by stretching a little bit, human capacity, resources, the production coefficients, and other relevant parameters may be adjusted so as to make the target feasible. In this article, we formulate the program into linear programming model and study how to optimally adjust the relevant coefficients so that the target solution could be attainable. In case the target is unattainable, we may either utilize the bisection method or the fuzzy linear programming techniques to revise the target as to make it a reachable one.

Article information

Source
Taiwanese J. Math., Volume 12, Number 8 (2008), 2045-2062.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500405135

Digital Object Identifier
doi:10.11650/twjm/1500405135

Mathematical Reviews number (MathSciNet)
MR2459813

Zentralblatt MATH identifier
1175.90288

Subjects
Primary: 90C05: Linear programming

Keywords
competence set competence set adjustment Habitual domains management by objectives fuzzy linear programming

Citation

Lai, Tsung-Chih Lai; Chianglin, Chieh-Yow; Yu, Po-Lung. OPTIMAL ADJUSTMENT OF COMPETENCE SET WITH LINEAR PROGRAMMING. Taiwanese J. Math. 12 (2008), no. 8, 2045--2062. doi:10.11650/twjm/1500405135. https://projecteuclid.org/euclid.twjm/1500405135


Export citation

References

  • K. R. Ahuja and B. J. Orlin, Inverse Optimization, Oper. Res., 49 (2001), 771-783.
  • C. Carlsson and P. Korhonen, A parametric approach to fuzzy linear programming, Fuzzy Sets and Systems, 20 (1986), 17-30.
  • J. W. Feng and P. L. Yu, Minimum Spanning Table and Optimal Expansion of Competence Set, J. Optim. Theory Appl., 99 (1998), 655-679.
  • H. L. Li and P. L. Yu, Optimal Competence Set Expansion Using Deduction Graphs, J. Optim. Theory Appl., 80 (1994), 75-91.
  • J. H. Mathews and K. D. Fink, Numerical Methods Using MATLAB, 4th ed. Prentice Hall, Upper Saddle River, New Jersey, 2004.
  • D. S. Shi and P. L. Yu, Optimal Expansion and Design of Competence Sets with Asymmetric Acquiring Costs, J. Optim. Theory Appl., 88 (1996), 643-658.
  • A. Tarantola, Inverse Problem Theory: Methods for data fitting and Model Parameter Estimation, Elsevier Science Publishing Company Inc., New York, 1987.
  • D. M. Troutt, K. S. Tadisina, C. Sohn and A. A. Brandyberry, Linear Programming System Identification, European J. Oper. Res., 161 (2005), 663-672.
  • P. L. Yu, Multiple-Criteria Decision Making: Concept, Techniques, and Extensions, Plenum Press, New York, 1985.
  • P. L. Yu, Forming Winning Strategies: An Integrated Theory of Habitual Domains, Springer-Verlag, Heidelberg, 1990.
  • P. L. Yu, Habitual Domains and Forming Winning Strategies, NCTU Press, Taiwan, 2002.
  • P. L. Yu and D. Zhang, A Foundation for Competence Set Analysis, Math. Social Sci., 20 (1990), 251-299.
  • J. Zhang and Z. Liu, Calculating some inverse linear programming problems, J. Comput. Appl. Math., 72 (1996), 261-273.
  • J. Zhang and Z. Liu, A further study on inverse linear programming problems, J. Comput. Appl. Math., 106 (1999), 345-359.