Taiwanese Journal of Mathematics

CHEN IDEAL KAEHLER HYPERSURFACES

Zerrin S. ent¨urk and Leopold Verstraelen

Full-text: Open access

Abstract

The concept of Chen ideal submanifolds is illustrated by characterizing the complex hypercylinders in the complex Euclidean spaces and the complex hyperquadrics in the complex projective space forms in terms of equalities involving their intrinsic and normal scalar curvatures and simplest “delta” curvatures.

Article information

Source
Taiwanese J. Math., Volume 12, Number 7 (2008), 1597-1608.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500405073

Digital Object Identifier
doi:10.11650/twjm/1500405073

Mathematical Reviews number (MathSciNet)
MR2449650

Subjects
Primary: 53B20: Local Riemannian geometry 53B30: Lorentz metrics, indefinite metrics 53B50: Applications to physics 53C25: Special Riemannian manifolds (Einstein, Sasakian, etc.)

Keywords
Kaehler hypersurfaces complex hypercylinders complex quadrics Chen curvatures

Citation

S. ent¨urk, Zerrin; Verstraelen, Leopold. CHEN IDEAL KAEHLER HYPERSURFACES. Taiwanese J. Math. 12 (2008), no. 7, 1597--1608. doi:10.11650/twjm/1500405073. https://projecteuclid.org/euclid.twjm/1500405073


Export citation